PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Mapping Ghana by GMT and R scripting: advanced cartographic approaches to visualize correlations between the topography, climate and environmental setting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The applications of the machine learning and programming approaches in cartography has been increasing in recent years. This paper presents a case study of the scripting techniques used for cartographic mapping using Generic Mapping Tools (GMT) and R language (raster and tmaps packages). The aim of the study is environmental mapping of Ghana. The materials include high-resolution raster grids: topography by the General Bathymetric Chart of the Oceans (GEBCO), climate and environmental datasets (TerraClimate) and Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM) for geomorphometric analysis (slope, aspect, hillshade and elevations). The methodology includes code snippets commented and explained with details of scripts. It is argued that using consolebased scripting tools for mapping is effective for cartographic workflow due to the logical structure and repeatability of scripts. The results include eight new thematic maps of Ghana performed using scripting approach inGMTscripting toolset and R language for quantitative and qualitative environmental assessment. Maps show correlations between the landforms of Ghana and certain environmental variables (drought index and soil moisture) showing the effects of the topographic relief on the distribution of the continuous geographic fields. These varied in several geographically distinct regions of Ghana: Ashanti (Kumasi), Volta, Savannah, coastal and northern regions. Demonstrated maps show that scripting method works effectively on a wide range of geosciences including environmental, topographic and climate studies. In such a way, this paper contributes both to the regional studies of Ghana and development of cartographic techniques.
Słowa kluczowe
Rocznik
Strony
art. no. e16, 2022
Opis fizyczny
Bibliogr. 81 poz., rys.
Twórcy
  • Université Libre de Bruxelles: Bruxelles, Bruxelles, BE
Bibliografia
  • [1] Abatzoglou, J., Dobrowski, S., Parks, S. et al. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data, 5, 170191. DOI: 10.1038/ sdata.2017.191.
  • [2] Acheampong, M., Yu, Q., Enomah, L.D. et al. (2018). Land use/cover change in Ghana’s oil city: Assessing the impact of neoliberal economic policies and implications for sustainable development goal number one – A remote sensing and GIS approach. Land Use Policy, 73, 373–384. DOI: 10.1016/ j.landusepol.2018.02.019.
  • [3] Adzawla, W., Azumah, S.B., Anani, P.Y. et al. (2020). Analysis of farm households’ perceived climate change impacts, vulnerability and resilience in Ghana. Sci. Afr., 8, e00397. DOI: 10.1016/j.sciaf. 2020.e00397.
  • [4] Agbenyo, F., Nunbogu, A.M., and Dongzagla, A. (2017). Accessibility mapping of health facilities in rural Ghana. J. Transp. Health, 6, 73–83. DOI: 10.1016/j.jth.2017.04.010.
  • [5] Alvioli, M., Marchesini, I., Reichenbach, P. et al. (2016). Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling. Geosci. Model Dev., 9, 3975–3991. DOI: 10.5194/gmd-9-3975-2016.
  • [6] Alvioli, M., Mondini, A.C., Fiorucci, F. et al. (2018). Topography-driven satellite imagery analysis for landslide mapping. Geomat., Nat. Hazards and Risk, 9(1), 544–567. DOI: 10.1080/19475705. 2018.1458050.
  • [7] Amankwah, A.A., Quaye-Ballard, J.A., Koomson, B. et al. (2021). Deforestation in forest-savannah transition zone of Ghana: Boabeng-Fiema monkey sanctuary. Glob. Ecol. Conserv., 25, e01440. DOI: 10.1016/j.gecco.2020.e01440.
  • [8] Amisigo, B.A., McCluskey, A., Swanson, R. (2015). Modeling Impact of Climate Change on Water Resources and Agriculture Demand in the Volta Basin and other Basin Systems in Ghana. Sustainability, 7, 6957–6975. DOI: 10.3390/su7066957.
  • [9] Antwi-Agyei, P., Fraser, E.D.G., Dougill, A.J. et al. (2012). Mapping the vulnerability of crop production to drought in Ghana using rainfall, yield and socioeconomic data. Appl. Geogr., 32(2), 324–334. DOI: 10.1016/j.apgeog.2011.06.010.
  • [10] Appiah-Badu, K., Anning, A.K., Eshun, B. et al. (2022). Land use effects on tree species diversity and soil properties of the Awudua Forest, Ghana. Glob. Ecol. Conserv., 34, e02051. DOI: 10.1016/j.gecco. 2022.e02051.
  • [11] Asare, A., Thodsen, H., Antwi, M. et al. (2021). Land Use and Land Cover changes in Lake Bosumtwi Watershed, Ghana (West Africa). Remote Sens. Appl.: Soc. En., 23, 100536. DOI: 10.1016/j.rsase. 2021.100536.
  • [12] Ashiagbor, G., Forkuo, E.K., Asante, W.A. et al. (2020a). Pixel-based and object-oriented approaches in segregating cocoa from forest in the Juabeso-Bia landscape of Ghana. Remote Sens. Appl.: Soc. En., 19, 100349. DOI: 10.1016/j.rsase.2020.100349.
  • [13] Ashiagbor, G., Ofori-Asenso, R., Forkuo, E.K. et al. (2020b). Measures of geographic accessibility to health care in the Ashanti Region of Ghana. Sci. Afr., 9, e00453. DOI: 10.1016/j.sciaf.2020.e00453.
  • [14] Atta-Peters, D., and Achaegakwo, C.A. (2016). Palynofacies and palaeoenvironmental significance of the Albian – Cenomanian succession of the Epunsa-1 well, onshore Tano Basin, western Ghana. J. Afr. Earth Sci., 114, 1–12. DOI: 10.1016/j.jafrearsci.2015.10.020.
  • [15] Awotwi, A., Kumi, M., Jansson, P.E. et al. (2015). Predicting Hydrological Response to Climate Change in the White Volta Catchment, West Africa. J. Earth Sci. Clim. Chang., 6, 249. DOI: 10.4172/2157- 7617.1000249.
  • [16] Awotwi, A., Anornu, G.K., Quaye-Ballard, J. et al. (2017). Analysis of climate and anthropogenic impacts on runoff in the Lower Pra River Basin of Ghana. Heliyon, 3(12), e00477. DOI: 10.1016/j.heliyon. 2017.e00477.
  • [17] Awotwi, A., Anornu, G.K., Quaye-Ballard, J.A. et al. (2018). Monitoring land use and land cover changes due to extensive gold mining, urban expansion, and agriculture in the Pra River Basin of Ghana, 1986-2025. Land Degrad. Dev., 29, 3331–3343. DOI: 10.1002/ldr.3093.
  • [18] Bishop, M.P., Shroder Jr., J.F., and Colbyb, J.D. (2003). Remote sensing and geomorphometry for studying relief production in high mountains. Geomorphology, 55, 345–361. DOI: 10.1016/S0169-555X(03) 00149-1.
  • [19] Braimoh, A.K. (2004). Seasonal migration and land-use change in Ghana. Land Degr. Dev., 15, 37–47. DOI: 10.1002/ldr.588.
  • [20] Burrough, P., and McDonnell, R.A. (1998). Principles of Geographical Information Systems. Oxford: University Press.
  • [21] Cobbinah, P.B., Black, R., Thwaites, R. (2015). Biodiversity conservation and livelihoods in rural Ghana: Impacts and coping strategies. Environ. Dev., 15, 79–93. DOI: 10.1016/j.envdev.2015.04.006.
  • [22] Dwomoh, F.K., Wimberly, M.C., Cochrane, M.A. et al. (2019). Forest degradation promotes fire during drought in moist tropical forests of Ghana. For. Ecol. Manag., 440, 158–168. DOI: 10.1016/j.foreco. 2019.03.014.
  • [23] Dzikunoo, E.A., Kazapoe, R.W., Agbetsoamedo, J.E. (2021). An integrated structural and geophysical approach to defining the structures of part of the Nangodi greenstone belt, northeastern Ghana. J. Afr. Earth Sci., 180, 104238. DOI: 10.1016/j.jafrearsci.2021.104238.
  • [24] Ferraro, M.B., and Giordani, P. (2015). A toolbox for fuzzy clustering using the R programming language. Fuzzy Sets Syst., 279, 1–16. DOI: 10.1016/j.fss.2015.05.00.
  • [25] Forson, E.D., Menyeh, A., Wemegah, D.D. (2021). Mapping lithological units, structural lineaments and alteration zones in the Southern Kibi-Winneba belt of Ghana using integrated geophysical and remote sensing datasets. Ore Geol. Rev., 137, 104271. DOI: 10.1016/j.oregeorev.2021.104271.
  • [26] Gauger, S., Kuhn, G., Gohl, K. et al. (2007). Swath bathymetric mapping. Reports on Polar and Marine Research, 557, 38–45. DOI: 10.6084/m9.figshare.7439231.
  • [27] GEBCO Compilation Group 2020 (2020) Grid. DOI: 10.5285/a29c5465-b138-234d-e053-6c86abc040b9.
  • [28] Glover, R.L.K., Abaidoo, R.C., Jakobsen, M. et al. (2005). Biodiversity of Saccharomyces cerevisiae isolated from a survey of pito production sites in various parts of Ghana. Syst. Appl. Microbiol., 28(8), 755–761. DOI: 10.1016/j.syapm.2005.05.003.
  • [29] Gyamfi, E., Derkyi, M.A.A., Brobbey, L.K. (2021). Insights, motives, and means of overcoming forest offenses in Ghana’s forestry sector: The case of the Bibiani Forest District. Sci. Afr., 13, e00962. DOI: 10.1016/j.sciaf.2021.e00962.
  • [30] Hijmans, R.J., and van Etten, J. (2012). Raster: Geographic analysis and modeling with raster data. R package version 2.0-12. http://CRAN.R-project.org/package=raster.
  • [31] Hobson, R.D. (1972). Surface roughness in topography: a quantitative approach. In: Chorley, R.J. (Eds.) Spatial Analysis in Geomorphology. Harper and Row, 221–245.
  • [32] Holling, C.S. (1992). Cross-scale morphology, geometry, and dynamics of ecosystems. Ecological Society of America – Ecological Monographs, 62(4), 447–502. DOI: 10.2307/2937313.
  • [33] Horn, B.K.P. (1981). Hill shading and the reflectance map. Proceedings of the IEEE, 69, 14–47.
  • [34] Incoom, A.B.M., Adjei, K.A., and Odai, S.N. (2020). Rainfall variabilities and droughts in the Savannah zone of Ghana from 1960-2015. Sci. Afr., 10, e00571. DOI: 10.1016/j.sciaf.2020.e00571.
  • [35] Jarvis, R.S., and Clifford, N.J. (1990). Specific geomorphometry. In: Goudie, A. et al., (Eds.), Geomorphological Techniques. 2nd ed., 63-70. London: Unwin Hyman.
  • [36] Jebamalai, J.M., Marlein, K., Laverge, J. et al. (2019). An automated GIS-based planning and design tool for district heating: Scenarios for a Dutch city. Energy, 183, 487–496. DOI: 10.1016/j.energy. 2019.06.111.
  • [37] Jones, K.H. (1998). A comparison of algorithms used to compute hill slope as a property of the DEM. Comp. Geosci, 24(4), 315–323. DOI: 10.1016/S0098-3004(98)00032-6.
  • [38] Kasei, R., Diekkrüger, B., and Leemhuis, C. (2010). Drought frequency in the Volta Basin of West Africa. Sustainability Sci., 5, 89. DOI: 10.1007/s11625-009-0101-5.
  • [39] Kasei, R.A., Ampadu, B., and Yalevu, S. (2014). Impacts of Climate Variability on Food Security in Northern Ghana. J. Earth Sci. Geotech. Eng., 4, 47–59.
  • [40] Klaučo, M., Gregorová, B., Stankov, U. et al. (2013). Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Open Geosci., 5(1), 28–42. DOI: 10.2478/s13533-012-0120-0.
  • [41] Klaučo, M., Gregorová, B., Koleda, P. et al. (2017). Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environ. Eng. Manag. J., 2(16), 449–458. DOI: 10.30638/eemj.2017.045.
  • [42] Kuhn, G., Hass, C., Kober, M. et al. (2006). The response of quaternary climatic cycles in the South-East Pacific: development of the opal belt and dynamics behavior of the West Antarctic ice sheet. In: Gohl, K. (Eds). Expeditionsprogramm Nr. 75 ANT XXIII/4, AWI. DOI: 10.13140/RG.2.2.11468.87687.
  • [43] Larbi, I., Nyamekye, C., Dotse, S.-Q. et al. (2022). Rainfall and temperature projections and the implications on streamflow and evapotranspiration in the near future at the Tano River Basin of Ghana. Sci. Afr., 15, e01071. DOI: 10.1016/j.sciaf.2021.e01071.
  • [44] Leemhuis, C., Jung, G., Kasei, R. et al. (2009). The Volta Basin Water Allocation System: assessing the impact of small-scale reservoir development on the water resources of the Volta basin, West Africa. Adv. Geosci., 21, 57–62. DOI: 10.5194/adgeo-21-57-2009.
  • [45] Lemenkova, P., Promper, C., and Glade, T. (2012). Economic Assessment of Landslide Risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria. In: Eberhardt, E., Froese, C., Turner, A. K., and Leroueil, S. (Eds.). Protecting Society through Improved Understanding. 11th International Symposium on Landslides and the 2nd North American Symposium on Landslides and Engineered Slopes (NASL), June 2-8, 2012. Canada, Banff, 279–285. DOI: 10.6084/m9.figshare.7434230.
  • [46] Lemenkova, P. (2018a). R scripting libraries for comparative analysis of the correlation methods to identify factors affecting Mariana Trench formation. J. Marine Tech. En., 2, 35–42. DOI: 10.6084/ m9.figshare.7434167.
  • [47] Lemenkova, P. (2018b). Factor Analysis by R Programming to Assess Variability Among Environmental Determinants of the Mariana Trench. Turkish J. Maritime and Marine Sci., 4, 146–155. DOI: 10.6084/ m9.figshare.7358207.
  • [48] Lemenkova, P. (2019a). Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geod. Cartogr., 45(2), 57–84. DOI: 10.3846/gac.2019.3785.
  • [49] Lemenkova, P. (2019b). An Empirical Study of R Applications for Data Analysis in Marine Geology. J. Mar. Sci. Tech. Bull., 8(1), 1–9. DOI: 10.33714/masteb.486678.
  • [50] Lemenkova, P. (2019c). Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Polish Cartogr. Rev., 51(4), 181–194. DOI: 10.2478/pcr-2019-0015.
  • [51] Lemenkova, P. (2019d). GMT Based Comparative Analysis and Geomorphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica, 14(2), 39–48. DOI: 10.21163/GT_2019.142.04.
  • [52] Lemenkova, P. (2020a). Using R packages ‘tmap’, ‘raster’ and ‘ggmap’ for cartographic visualization: An example of dem-based terrain modelling of Italy, Apennine Peninsula. Zbornik radova – Geografski fakultet Univerziteta u Beogradu, 68, 99–116. DOI: 10.5937/zrgfub2068099L.
  • [53] Lemenkova, P. (2020b). Geodynamic setting of Scotia Sea and its effects on geomorphology of South Sandwich Trench, Southern Ocean. Pol. Polar Research, 42(1): 1–23. DOI: 10.24425/ppr.2021.136510.
  • [54] Lemenkova, P. (2020c). GEBCO Gridded Bathymetric Datasets for Mapping Japan Trench Geomorphology by Means of GMT Scripting Toolset. Geod. Cartogr., 46(3), 98–112. DOI: 10.3846/gac.2020.11524.
  • [55] Lemenkova, P. (2020d). NOAA Marine Geophysical Data and a GEBCO Grid for the Topographical Analysis of Japanese Archipelago by Means of GRASS GIS and GDAL Library. Geom. Environ. Eng., 14(4), 25–45. DOI: 10.7494/geom.2020.14.4.25.
  • [56] Lemenkova, P. (2020e). R Libraries {dendextend}and {magrittr}and Clustering Package scipy.cluster of Python For Modelling Diagrams of Dendrogram Trees. Carpathian J. Electr. Comput. Eng., 13(1), 5–12. DOI: 10.2478/cjece-2020-0002.
  • [57] Lemenkova, P. (2020f). Sentinel-2 for High Resolution Mapping of Slope-Based Vegetation Indices Using Machine Learning by SAGA GIS. Transylvanian Review of Systematical and Ecological Research, 22(3), 17–34. DOI: 10.2478/trser-2020-0015.
  • [58] Lemenkova, P. (2021a). SAGA GIS for Computing Multispectral Vegetation Indices by Landsat TM for Mapping Vegetation Greenness. Contemporary Agriculture, 70(1-2), 67–75. DOI: 10.2478/contagri2021-0011.
  • [59] Lemenkova, P. (2021b). Topography of the Aleutian Trench south-east off Bowers Ridge, Bering Sea, in the context of the geological development of North Pacific Ocean. Baltica 34(1), 27–46. DOI: 10.5200/ baltica.2021.1.3.
  • [60] Lemenkova, P. (2021c). Geophysical Mapping of Ghana Using Advanced Cartographic Tool GMT. Kartografija i Geoinformacije, 20(36), 16–37. DOI: 10.32909/kg.20.36.2.
  • [61] Lemenkova, P. (2021d). Dataset compilation by GRASS GIS for thematic mapping of Antarctica: Topographic surface, ice thickness, subglacial bed elevation and sediment thickness. Czech Polar Reports, 11(1), 67–85. DOI: 10.5817/CPR2021-1-6.
  • [62] Lemenkova, P. (2021e). Submarine tectonic geomorphology of the Pliny and Hellenic Trenches reflecting geologic evolution of the southern Greece. Rudarsko-geološko-naftni zbornik, 36, 4, 33–48. DOI: 10.17794/rgn.2021.4.4.
  • [63] Lemenkova, V., and Lemenkova, P. (2021a). Using TeX Markup Language for 3D and 2D Geological Plotting. Found. Comput. Decis. Sci., 46(3), 43–69. DOI: 10.2478/fcds-2021-0004.
  • [64] Lemenkova, V., and Lemenkova, P. (2021b). Measuring Equivalent Cohesion Ceq of the Frozen Soils by Compression Strength Using Kriolab Equipment. Civ. Environ. Eng. Rep., 31(2), 63–84. DOI: 10.2478/ceer-2021-0020.
  • [65] Lindh, P., and Lemenkova, P. (2021a). Evaluation of Different Binder Combinations of Cement, Slag and CKD for S/S Treatment of TBT Contaminated Sediments. Acta Mech. et Autom., 15(4), 236–248. DOI: 10.2478/ama-2021-0030.
  • [66] Lindh, P., and Lemenkova, P. (2021b). Resonant Frequency Ultrasonic P-Waves for Evaluating Uniaxial Compressive Strength of the Stabilized Slag–Cement Sediments. Nordic Concrete Research, 65(2), 39–62. DOI: 10.2478/ncr-2021-0012.
  • [67] Logah, F.Y., Obuobie, E., Ofori, D. et al. (2013). Analysis of Rainfall Variability in Ghana. International J. Latest Research In Eng. Comput., 1, 1-8.
  • [68] Mensah, A.A., Sarfo, D.A., and Partey, S.T. (2019). Assessment of vegetation dynamics using remote sensing and GIS: A case of Bosomtwe Range Forest Reserve, Ghana. Egypt. J. Remote Sens. Space Sci., 22(2), 145–154.
  • [69] Nock, K., Bonanno, D., Elmore, P. et al. (2019). Applying single-image super-resolution for the enhancement of deep-water bathymetry. Heliyon, 5(10), e02570. DOI: 10.1016/j.heliyon.2019.e02570.
  • [70] Obiri, B.D., Obeng, E.A., Oduro, K.A. et al. (2021). Farmers’ perceptions of herbicide usage in forest landscape restoration programs in Ghana. Sci. Afr., 11, e00672. DOI: 10.1016/j.sciaf.2020.e00672.
  • [71] Peckham, S.D., and Gupta, V.K. (1999). A reformulation of Horton’s laws for large river networks in terms of statistical self-similarity. Water Resour. Res., 35(9), 2763–2777. DOI: 10.1029/1999WR900154.
  • [72] Peirce, C., Whitmarsh, R.B., Scrutton, R.A., et al. (1996). Côte d’Ivoire-Ghana margin: seismic imaging of passive rifted crust adjacent to a transform continental margin. Geophys. J. Int., 125(3), 781–795. DOI: 10.1111/j.1365-246X.1996.tb06023.x.
  • [73] R Core Team (2020). R: A language and environment for statistical computing. R 2Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.
  • [74] Ritter, P. (1987). A vector-based slope and aspect generation algorithm. Photogramm. Eng. Remote Sens., 53, 1109–1111.
  • [75] Schenke, H.W., and Lemenkova, P. (2008). Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten, 81, 16–21. DOI: 10.6084/m9.figshare.7435538.
  • [76] Schenke, H. (2016). General Bathymetric Chart of the Oceans (GEBCO). In: Harff J., Meschede M., Petersen S. and Thiede J. (Eds). Encyclopedia of Marine Geosciences. Encyclopedia of Earth Sciences Series. Dordrecht: Springer. DOI: 10.1007/978-94-007-6238-1_63.
  • [77] Suetova, I.A., Ushakova, L.A., and Lemenkova, P. (2005). Geoinformation mapping of the Barents and Pechora Seas. Geogr. Nat. Resour., 4, 138–142. DOI: 10.6084/m9.figshare.7435535.
  • [78] Tansley, G., Stewart, B.T., Gyedu, A. et al. (2017). The Correlation Between Poverty and Access to Essential Surgical Care in Ghana: A Geospatial Analysis. World J. Surg., 41, 639–643.
  • [79]Tennekes, M. (2012). tmap: Thematic Maps in R. J. Stat. Softw., 84(6), 1–39, 2018.
  • [80] Wessel, P., Luis, J.F., Uieda, L. et al. (2019). The Generic Mapping Tools version 6. Geochemistry, Geophys., Geosystems, 20, 5556–5564. DOI: 10.1029/2019GC008515.
  • [81] Worqlul, A.W., Dile, Y.T., Jeong, J., et al. (2019). Effect of climate change on land suitability for surface irrigation and irrigation potential of the shallow groundwater in Ghana. Comput. Electron. Agric., 157, 110–125. DOI: 10.1016/j.compag.2018.12.040.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-168b937f-4260-4079-bb55-372aa0774cbe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.