PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Calculation and Selection of Flat-Plate Solar Collector Geometric Parameters with Thermosiphon Circulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article describes a newly developed calculation technique and the choice of the geometrical parameters of the solar collector with the siphon effect. The dependence of the cross section of the pipe on the flow time for different values of the head is also shown. With an increase in the siphon head, the flow time of the liquid increases as well. This is explained by the fact that with increasing head, the hydraulic resistance of the siphon rises, which leads to a decrease in the velocity of the fluid. For the first time, a relationship determining the time of fluid outflow in dependence on the geometric parameters of the solar collector is formulated. The developed technique allowed to establish that the local hydraulic resistance and friction play a significant role in the heat carrier flow rate.
Rocznik
Strony
176--181
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
  • Institute Information and Computational Technologies CS MES RK, Pushkin St 125, Almaty, Kazakhstan
  • Al-Farabi Kazakh National University, 71 al-Farabi Ave., 050040, Almaty, Kazakhstan
  • Institute Information and Computational Technologies CS MES RK, Pushkin St 125, Almaty, Kazakhstan
autor
  • Lublin University of Technology, ul. Nadbystrzycka 38A, 20-618 Lublin, Poland
  • International University of Information Technologies, Kazakhstan
  • Institute Information and Computational Technologies CS MES RK, Pushkin St 125, Almaty, Kazakhstan
  • Al-Farabi Kazakh National University, 71 al-Farabi Ave., 050040, Almaty, Kazakhstan
autor
  • Institute Information and Computational Technologies CS MES RK, Pushkin St 125, Almaty, Kazakhstan
autor
  • Institute Information and Computational Technologies CS MES RK, Pushkin St 125, Almaty, Kazakhstan
autor
  • Institute Information and Computational Technologies CS MES RK, Pushkin St 125, Almaty, Kazakhstan
  • Almaty University of Power Engineering and Telecommunications, Baytursynov Street 126, 050013 Almaty, Kazakhstan
Bibliografia
  • 1. Armenta C., Vorobieff P., Mammoli A. 2011. Summer off peak performance enhancement for rows of fixed solar thermal collectors using flat reflective surfaces. Solar Energy 85(9), 2041–2052.
  • 2. Atkins M.J., Walmsley M.R.W., Morrison A.S. 2010. Integration of solar thermal for improved energy efficiency in low-temperature-pinch. Industrial Processes Energy 35(5), 1867–1873.
  • 3. Belessiotis V., Mathioulakis E. 2002. Analytical approach of thermosyphon solar domestic hot water system performance. Sol. Energy, 72, 307–315.
  • 4. Bojic M., Kalogirou S., Petronijevic K. 2002. Simulation of a solar domestic water heating system using a time marching model. Renewable Energy 27(3), 441–452.
  • 5. Cristofari C., Notton G., Poggi P., Louche A. 2003. Influence of the flow rate and the tank stratification degree on the performances of a solar flat-plate collector. International Journal of Thermal Sciences 42(5), 455–469.
  • 6. Dubey S., Tiwari T. 2009. Analysis of PV/T flat plate water collectors connected in series. Solar Energy, 83(9), 1485–1498.
  • 7. Eamesi P.C., Norton B. 1998. The effect of tank geometry on thermally stratified sensible heat storage subject to low reynolds number flows. International Journal of Heat and Mass Transfer 41(14), 2131–2142.
  • 8. Fanney A.H., Klein S.A. 1988. Thermal performance comparisons for solar hot water systems subjected to various collector and heat exchanger flow rates. Solar Energy 40 (1), 1–11.
  • 9. Garg H.P. 1973. Design and performance of a large-size solar water heater. Solar Energy 14, 303–312.
  • 10. Haller M.Y., Cruickshank C.A., Streicher W., Harrison S.J., Andersen E., Furbo S. 2009. Methods to determine stratification efficiency of thermal energy storage processes-review and theoretical comparison. Solar Energy, 83(10), 1847–1860.
  • 11. Hobbi A., Siddiqui K. 2009. Optimal design of a forced circulation solar water heating system for a residential unit in cold climate using TRNSYS. Solar Energy 83(5), 700–714.
  • 12. Hollands K.G.T., Lightstone M.F. 1989. A review of low-flow stratified-tank solar water heating systems. Solar Energy 43(2), 97–105.
  • 13. Kalogirou S.A. 2009. Solar energy engineering: processes and systems. Elsevier, London.
  • 14. Karaghouli A.A., Alnaser W.E. 2001. Experimental study on thermosyphon solar water heater in Bahrain. Renew. Energy, 24, 389–396.
  • 15. Kim Y.D., Thu K., Bhatia H.K., Charanjit Singh Bhatia C.S., Kim Choon Ng. 2012. Thermal analysis and performance optimization of a solar hot water plant with economic evaluation. Solar Energy 86(5), 1378–1395.
  • 16. Kleinbach E.M., Beckman W.A., Klein S.A. 1993. Performance study of one-dimensional models for stratified thermal storage tanks. Solar Energy 50(2), 155–166.
  • 17. Kurz D. 2012. Comparative analysis of photovoltaic panel and solar roof tile in application to family housing. IAPGOS 2 (4b), 17–20
  • 18. Lavan Z., Thompson J. 1977. Experimental study of thermally stratified hot water storage tanks. Solar Energy, 19(5), 519–524.
  • 19. Luminosu I., Fara L. 2005. Determination of the optimal operation mode of a flat solar collector by exergetic analysis and numerical simulation. Energy 30(5), 731–747.
  • 20. Lundh M., Zass K., Wilhelms C., Vajen K., Jordan U. 2010. influence of store dimensions and auxiliary volume configuration on the performance of medium-sized solar combisystems. Solar Energy 84(7), 1095–1102.
  • 21. Michaelides I., Eleftheriou P., Siamas G.A., Roditis G., Kyriacou P. 2011. Experimental investigation of the night losses of hot water storage tanks in thermosyphon solar water heaters. J. Renew. Sustain. Energy, 3, 033103:1–033103:9.
  • 22. Mishra R.S. 1992. Theoretical and experimental studies of pressurized and non-pressurized solar water heating systems of thermosyphonic type. Renew. Energy, 2, 371–384.
  • 23. Morrison G.L. 2001. Solar collectors. J. Gordon, Ed., Solar energy–the state of the art–ISES Position Papers, James and James Science Publishers, London, 145–221.
  • 24. Nelson J.E.B., Balakrishnan A.R., Srinivasa-Murthy S. 1999. Experiments on stratified chilled-water tanks. International Journal of Refrigeration 22(3), 216–234.
  • 25. Papanicolaou E., Belessiotis V. 2009. Transient development of flow and temperature fields in an underground thermal storage tank under various charging modes. Solar Energy 83(8), 1161–1176.
  • 26. Quijera J.A., Alriols M.G., Labidi J. 2011. Integration of a solar thermal system in a dairy process. Renewable Energy 36(6), 1843–1853.
  • 27. Rodríguez-Hidalgo M.C. 2012. Domestic hot water consumption vs solar thermal energy storage: the optimum size of the storage tank. Applied Energy 97, 897–906.
  • 28. Shariah A.M., Ecevit A. 1995. Effect of hot water load temperature on the performance of a thermosyphon solar water heater with auxiliary electric heater. Energy Conversion and Management 36(5), 289–296.
  • 29. Shariah A.M., Lof G.O.G. 1996. The optimization of tank-volume-to-collector-area ratio for a thermosyphon solar water heater. Renew. Energy, 7, 289–300.
  • 30. Sharp M.K., Loehrke R.I. 1979. Stratified thermal storage in residential solar energy applications. Energy 3(2), 106–113.
  • 31. Shitzer A., Kalmanoviz Y., Zvirin Y., Grossman G. 1978. Experiments with a flat plate solar water heating system in thermosyphonic flow. Sol. Energy, 22, 27–33.
  • 32. Wood R.J., Al-Muslah S.M., O’Callaghan P.W., Probert S.D. 1981. Thermally stratified hot water storage systems. Applied Energy, 9(3), 231-242.
  • 33. Wuestling M.D., Klein S.A., Duffie J.A. 1985. Promising control alternatives for solar water heating systems. Journal of Solar Energy Engineering 107(3), 215–221.
  • 34. Young M.F., Bauhn J.W. 1981, An investigation of thermal stratification in horizontal storage tanks. ASME J. Sol. Energy Eng. 103, 286–290.
  • 35. Young M.F., Berguam J.B. 1984. The performance of a thermosyphon solar domestic hot water system with hot water removal. Sol. Energy, 32, 655–658.
  • 36. Zajkowski M., Prorok M. 2015. Propagation analysis of "cold roof" solar systems. Przeglad Elektrotechniczny 91(7), 89–92.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1681ea9b-f7d1-472c-b4c5-983eaff93831
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.