PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Properties of Reactive Materials for Application in Runoff Water Treatment Systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The emissions related to urbanized areas, including communication routes and accompanying facilities, are considered as essential sources of subsoil pollution. Enhancement of the naturally occurring removal processes in infiltration systems, e.g. through placing the appropriately selected materials (treatment zones) on the flow path of runoff water, prevents the spread of undesirable components. The article presents the analysis of tests checking the properties of selected low-cost mineral materials, activated carbon and zero-valent iron in terms of their applicability in the runoff water treatment zones. Their physical features, surface structure, and chemical and hydraulic properties were analysed. The test results indicate a well-developed surface area of active carbon and halloysite, as well as an extensive pore volume of active carbon, halloysite, zeolite and diatomite. Nevertheless, the average pore diameters indicated the potential limited access of pollutants to the inner structure of all analyzed materials. The chemical parameters point to the stimulation potential of precipitation processes by limestone sand and silica spongolite, ion exchange by zeolite and silica spongolite, and oxidation-reduction processes by zero-valent iron. The value of the material hydraulic conductivity may potentially limit their application in infiltration systems. Taking into account all analyzed parameters, activated carbon together with silica spongolite and zeolite have the best application potential.
Rocznik
Strony
185--197
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • Institute of Civil Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
Bibliografia
  • 1. Ahmed M.A., Ali S.M., El-Dek S.I., Galal A. 2013. Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water. Materials Science and Engineering: B, 178(10), 744–751.
  • 2. ASTM D7100 – 11. 2020. Standard test method for hydraulic conductivity compatibility testing of soils with aqueous solutions.
  • 3. AWWA 2002. Standard for Granular Filter Material. American Water Works Association ANSI/AWWA B100–09.
  • 4. Bachmann J., Deurer M., Arye G. 2007. Modeling water movement in heterogeneous water-repellent soil: 1. Development of a contact angle-dependent water-retention model. Vadose Zone Journal, 6, 436–445.
  • 5. Carman P.C. 1937. Fluid flow through a granular bed. Transactions of the Institute of Chemical Engineers London, 15, 150–156.
  • 6. Doerr S.H., Shakesby R.A., Walsh R.P.D. 2000. Soil water repellency: its causes, characteristics and hydrogeomorphological significance. Earth – Science Reviews, 51, 33–65.
  • 7. Dullien F.A.L. 1979. Porous media fluid transport and pore structure. Academic Press, New York.
  • 8. Feng N., Ghoveisi H., Bitton G., Bonzongo J.-C.J. 2016. Removal of phyto-accessible copper from contaminated soils using zero valent iron amendment and magnetic separation methods: assessment of residual toxicity using plant and MetPLATE™ studies. Environmental Pollution, 219, 9–18.
  • 9. Figarska-Warchoł B., Stańczak G., Rembiś M., Toboła T. 2015. Diatomaceous rocks of the Jawornik deposit (the Polish Outer Carpathians): petrophysical and petrographical evaluation. Geology, Geophysics and Environment, 41(4), 311–331.
  • 10. Fronczyk J., Mumford K.A. 2019. The impact of temperature on the removal of inorganic contaminants typical of urban stormwater. Applied Sciences, 9(7), 1273.
  • 11. Fronczyk J. 2017. Artificial road runoff water treatment by a pilot-scale horizontal permeable treatment zone. Ecological Engineering, 107, 198–207.
  • 12. Gillham R.W., O’Hannesin S.F., 1994. Enhanced degradation of halogenated aliphatics by zero-valent iron. Groundwater, 32(6), 958–967.
  • 13. Groszek A., Partyka S. 1993. Measurements of hydrophobic and hydrophilic surface sites by flow microcalorimetry. Langmuir, 9, 2721.
  • 14. Gruszecka-Kosowska A., Baran P., Wdowin M., Franus W. 2017. Waste dolomite powder as an adsorbent of Cd, Pb(II), and Zn from aqueous solutions. Environmental Earth Sciences, 76, 521.
  • 15. Hallett P.D., Bachmann J., Czachor H., Urbanek E., Zhang B. 2011. Encyclopedia of Agrophysics, Springer.
  • 16. Head K., Epps R. 2011. Manual of soil laboratory testing. Vol. II: Permeability, shear strength and compressibility test. Whittles Publishing, Dunbeath Mill.
  • 17. Hilliges R., Schriewer A., Helmreich B. 2013. A three-stage treatment system for highly polluted urban road runoff. Journal of Environmental Management, 128, 306–312.
  • 18. Huang W., Yu X., Tang J., Zhu Y., Zhang Y., Li D. 2015. Enhanced adsorption of phosphate by flowerlike mesoporous silica spheres loaded with lanthanum. Microporous and Mesoporous Materials, 217, 225–232.
  • 19. Inglezakis V.J., Fyrillas M.M., Stylianou M.A. 2018. Two-phase homogeneous diffusion model for the fixed bed sorption of heavy metals on natural zeolites. Microporous and Mesoporous Materials, 266, 164–176.
  • 20. Khorshidi M., Lu N. 2017. Quantification of exchangeable cations using soil water retention curve. Journal of Geotechnical and Geoenvironmental Engineering, 7, 04017057.
  • 21. Kłapyta Z., Żabiński W. (Ed.) 2008. Mineral sorbents of Poland. AGH University of Science and Technology Press, Cracow.
  • 22. Kozeny J. 1927. Über kapillare Leitung der Wassers im Boden. Sitzungsber. Akademie der Wissenschaften Wien, 136, 271–306 (in German).
  • 23. Kumar P.S., Korving L., Keesman K.J., van Loosdrecht M.C., Witkamp G.J. 2019. Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics. Chemical Engineering Journal, 358, 160–169.
  • 24. Lodeiro P., Barriada J. L., Herrero R., De Vicente, M. S. 2006. The marine macroalga Cystoseira baccata as biosorbent for cadmium (II) and lead (II) removal: kinetic and equilibrium studies. Environmental Pollution, 142(2), 264–273.
  • 25. Matusik J. 2014. Arsenate, orthophosphate, sulfate, and nitrate sorption equilibria and kinetics for halloysite and kaolinites with an induced positive charge. Chemical Engineering Journal, 246, 244–253.
  • 26. Mumford K.A., Rayner J.L., Snape I., Stark S.C., Stevens G.W., Gore D.B. 2013. Design, installation and preliminary testing of a permeable reactive barrier for diesel fuel remediation at Casey Station, Antarctica. Cold Regions Science and Technology, 96, 96–107.
  • 27. Nawrot N., Wojciechowska E. 2018. Assessment of trace metals leaching during rainfall events from building rooftops with different types of coverage–case study. Journal of Ecological Engineering, 19(3), 45–51.
  • 28. Parylak K., Zięba Z., Bułdys A., Witek K. (2013) Weryfikacja wyznaczania współczynnika filtracji gruntów niespoistych za pomocą wzorów empirycznych w ujęciu ich mikrostruktury. Architectura – Acta Scientiarum Polonorum, 12(2), 43–51 (in Polish).
  • 29. Pawluk K., Fronczyk J. 2015. Evaluation of single and multilayered reactive zones for heavy metals removal from stormwater. Environmental Technology, 36(12), 1576–1583.
  • 30. Pazwash H., 2016. Urban storm water management. CRC Press, Taylor & Francis Group, Boca Raton.
  • 31. Petersen L.W., Moldrup P., Jacobsen O.H., Rolston D.E. 1996. Relations between specific surface area and soil physical and chemical properties. Soil Science, 161(1), 9–21.
  • 32. PN-EN ISO 17892–3:2016–03 Geotechnical investigation and testing. Laboratory soil tetesting of soil. Part 3: Testing theDetermination of specific density.
  • 33. PN-EN ISO 17892–4:2017–01 Geotechnical investigation and testing. Laboratory soil tetesting of soil. Part 4: Determination of particle size distribution.
  • 34. Radziemska M. 2018. Study of applying naturally occurring mineral sorbents of Poland (dolomite halloysite, chalcedonite) for aided phytostabilization of soil polluted with heavy metals. Catena, 163, 123–129.
  • 35. Radziemska M., Mazur Z. 2017. Chemical composition of spring rapeseed grown in copper-contaminated soil amended with halloysite and zeolite. Journal of Ecological Engineering, 18(2), 38–43.
  • 36. Rajib M., Parveen M., Oguchi C.T. 2019. A rapid technique for measuring oxidation-reduction potential for solid materials. Journal of Science, Technology and Environment Informatics, 07(01), 510–516.
  • 37. Ritsema C.J., Dekker L.W. 2000. Preferential flow in water repellent sandy soils: principles and modeling implications. Journal of Hydrology, 231–232, 308–319
  • 38. Roberts F.J., Carbon B.A. 1971. Water repellence in sandy soils of southwestern Australia: I. Some studies related to field occurrence. Division of Plant Industry CSIRO (Australia), Field Station Record, 10, 13–20.
  • 39. Schollenberger C.J., Dreibelbis E.R. 1930) Analytical methods in base-exchange investigations on soils. Soil Science, 30(3), 161–174.
  • 40. Schueler T.R., 1987. Controlling urban runoff: a practical manual for planning and designing urban BMPs. Washington Metropolitan Water Resources Planning Board, Washington.
  • 41. Shimizu Y., Ateia M., Yoshimura C. 2018. Natural organic matter undergoes different molecular sieving by adsorption on activated carbon and carbon nanotubes. Chemosphere, 203, 345–352.
  • 42. Slater J.C. 1964. Atomic radii in crystals. The Journal of Chemical Physics, 41(10), 3199–3204.
  • 43. Stokes D.J. 2008. Principles and practice of variable pressure environmental scanning electron microscopy (VP-ESEM). John Wiley & Sons, Chichester.
  • 44. Tawfik D.S., Viola R.E. 2011. Arsenate replacing phosphate: alternative life chemistries and ion promiscuity. Biochemistry, 50(7), 1128–1134.
  • 45. Tran H.N., You S.-J., Hosseini-Bandegharaei A., Chao H.-P. 2017. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review, Water Research, 120, 88–116.
  • 46. Valencia A., Ordonez D., Wen D., McKenna A.M., Chang N.B., Wanielista M.P. 2020. The interaction of dissolved organic nitrogen removal and microbial abundance in iron-filings based green environmental media for stormwater treatment. Environmental Research, 109815.
  • 47. Wang Z., Wu Q. J., Wu L., Ritsema C.J., Dekker L.W., Feyen J. 2000. Effects of soil water repellency on infiltration rate and flow instability. Journal of Hydrology, 231, 265–276.
  • 48. Wiłun Z. 1987. Zarys geotechniki, Komunikacji i Łączności Publisher, Warsaw (in Polish).
  • 49. Yong R.N., Mulligan C.N. 2004. Natural attenuation of contaminants in soils. Lewis Publisher, Boca Raton.
  • 50. Xu D., Lee L.Y., Lim F.Y., Lyu Z., Zhu H., Ong S.L., Hu J. 2020. Water treatment residual: A critical review of its applications on pollutant removal from stormwater runoff and future perspectives. Journal of Environmental Management, 259, 109649.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-167eee22-8669-4f6b-ad24-1da2f610b65b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.