
POZNAN UNIVE RSIT Y OF TE CHNOLOGY ACADE MIC JOURNALS
No 80 Electrical Engineering 2014

__
* Poznan University of Technology.

Piotr KOZIERSKI*
Marcin LIS*
Andrzej KRÓLIKOWSKI*

IMPLEMENTATION OF FAST UNIFORM RANDOM
NUMBER GENERATOR ON FPGA

The article presents approach to implementation of random number generator on FPGA
unit. The objective was to select a generator with good properties (correlation values and
matching of probability density function were taken into account). Design focused on
logical elements so that the pseudo-random number generation time depend only on the
electrical properties of the system. The results are positive, because the longest time
determining the pseudorandom number was 16.7ns for the “slow model” of the FPGA and
7.3ns for “fast model”, while one clock cycle lasts 20ns.

KEYWORDS: random number generator, uniform noise, FPGA unit, logic functions

1. INTRODUCTION

 The FPGA unit is primarily intended for parallel computations. Its use can
reduce calculation time even by several orders of magnitude [6]. However, the
disadvantage of the system is the lack of many functions, which are basic in other
languages. One of those functions, on which article is focused, is the calculation of
pseudo-random number with uniform distribution. It is also an element required
for other noise generators, as for example Ziggurat Method [5], Alias Method [1]
or Ratio Method [4]. However, there are also methods that do not use uniform
noise, such as Wallace Method [3]. The approach proposed in this article assumes
implementation of a standard algorithm to generate random numbers. The
difference is that the whole algorithm should be made based only on logical gates,
so that it will have a very high speed, and the subsequent generation of the random
number will be able to take place in each clock cycle (every 20 ns).

The second section describes the type of the random number generator, which
has been selected for implementation. In the third chapter, one can read about
parameter selection of pseudo-random number generator. The method for module
implementing on FPGA is presented in chapter four, while in the fifth chapter
results of the time simulation were discussed. Chapter six concludes the article.

Piotr Kozierski, Marcin Lis, Andrzej Królikowski

168

2. RANDOM NUMBER GENERATOR

 The algorithm can be represented by short formula
 mmodcXaX n1n (1)
where X is random number. Parameters a , c and m are chosen by the
programmer. This algorithm has been proposed already in the 50s of the twentieth
century [2], but it is still often used in less sophisticated random number
generators. This type of generator was chosen for implementation on FPGA unit.
 All generator parameters were selected in such a way to reduce the number of
performed calculations, as much as possible. Therefore, the value m is equal to

322 (assumed that the number has to be 32-bit), to save time on calculating the
modulo. Sometimes one can come across with a proposal to establish the
parameter m larger than is needed, to increase the period after which sequentially
generated numbers will be repeated.
 In the particular case it can be assumed that parameter c is equal to 0,
however, in this case, all generated numbers would be even (or odd). One can
check that in order to generate numbers of both even and odd, parameters a and
c must be odd.
 Indication has been made that the logical elements must be used and in FPGA
all numbers greater than 1 are represented by the bit vector. Thus, in order to
reduce the number of operations, chosen parameters should have the minimum
number of non-zero bits (especially parameter a).
 Below is shown how big is the difference in multiplying the 8-bit number by
179 (210110011) and by 193 (211000001). One can see, that each additional
non-zero bit in the parameter a increases the number of logic elements required to
implement the algorithm.

0123456789101112131415

01234567

01234567

01234567

01234567

01234567

01234567

YYYYYYYYYYYYYYYY
XXXXXXXX

XXXXXXXX
XXXXXXXX

XXXXXXXX
XXXXXXXX
11001101

XXXXXXXX

Implementation of fast uniform random number generator on FPGA

169

0123456789101112131415

01234567

01234567

01234567

01234567

ZZZZZZZZZZZZZZZZ
XXXXXXXX

XXXXXXXX
XXXXXXXX
10000011

XXXXXXXX

 Therefore were selected only 86 primes, in which the number of non-zero bits
is 2 or 3, and among them a satisfactory value for the generator were sought.

3. CHOICE OF GENERATOR PARAMETERS

Certain parameters were chosen based on the calculated properties of pseudo-
random numbers sequence – autocorrelation and histogram.
 One of the good generator features should be low autocorrelation value [7]

i1N

1n
xx inxnx

N
1iR̂ (2)

for lags 0i , where N is length of pseudo-random number sequence and nx
is n-th number of this sequence. For the calculation of the autocorrelation, function
in Matlab was used, which calculates the value without scaling (default setting), so

i1N

1n
inxnxiR̂ (3)

 Parameter, based on the autocorrelation values, has been proposed

100

1i

2

rl iR̂c (4)

which value was directly compared between different pairs of generator
parameters c,a .
 The second property, which has been studied, is the histogram. The sum of
square errors between true value of probability density function (PDF) and the
histogram value has been calculated. This can be represented by the formula

M

1j

2

j

jj2

E
EO

h (5)

where M is the number of intervals of probability density function, jO means the

number of randomly selected values from the j-th interval and jE means
theoretical number of values in j-th interval.

Piotr Kozierski, Marcin Lis, Andrzej Królikowski

170

3.1. Simulations for different a and c parameters

 Based on values of rlc and 2h the best pair of generator parameters c,a was
searched. The length of generated sequence was 510N samples. The simulation
was repeated 100 times for each pair of parameters, with different initial values.
Table 1 shows some typical results obtained in the simulations.

Table 1. Results of h2 and crl in few simulations for different generator parameters

a, c h2 σ(h2) crl σ(crl)
0511 222a

023 222c
0.0994 0.0156 0.000989 0.000133

0919 222a
0118 222c

0.0994 0.0141 0.001343 0.000217

0918 222a
0619 222c

0.0992 0.0140 0.000963 0.000153

01330 222a
0112 222c

0.1278 0.0191 0.001877 0.000754

01221 222a
0619 222c

0.0945 0.0130 0.000795 0.000110

01529 222a
01330 222c

0.0815 0.0090 0.000738 0.000214

01330 222a
01720 222c

0.0900 0.0132 0.007080 0.003048

01930 222a
01720 222c

0.0017 0.0002 0.001390 0.000316

02127 222a
01114 222c

0.0488 0.0020 0.000563 0.000089

 Among the performed simulations the best was the last example in Table 1 (for

136314881222a 02127 and 18433222c 01114). Although one
can notice better results for 2h (second last example in Table 1), however the
parameter based on correlation was finally considered as the most important, so
pair of parameters obtained the best sequence in terms of rlc was chosen.

Implementation of fast uniform random number generator on FPGA

171

4. MODULE CONSTRUCTION FOR FPGA

 To better illustrate the operation and construction of the module, it will be
shown on the 8-bit example, for generator parameters 5c,41a . Below
shows the multiplication:

01234567

01234567

01234567

01234567

01234567

YYYYYYYY
XXXXXXXX

XXXXXXXX
XXXXXXXX
10010100

XXXXXXXX

 High-order bits are not shown, because the result of the module should be 8-bit
number, so only 0:7Y bits are visible. To the result of the multiplication should be
added the value of 5c , and therefore it can be presented as a sum:

01234567

012

01234

01234567

YYYYYYYY
10100000

XXX
XXXXX

XXXXXXXX

 To calculate the 0Y value, it must be perform the XOR operation on the values

0X and 1. 1Y value depends not only on 1X , but also on the previous sum – if
there is a carry (wP) or not. Additionally, in the case where four or more bits are
summed, should be taken into account also carry affecting on the next bit (wR).
Therefore, the final form of the sum will be as follows:

01234567

012

01234

01234567

0123456

5

YYYYYYYY
10100000

XXX
XXXXX

XXXXXXXX
PPPPPPP

R

 The smaller modules were created first, summing from 2 to 6 bits, and then
were combined together. For example, 4 bits summing module has 4 inputs
(number of bits) and 3 outputs (wY , wP and wR), where 1 output is the part of
the result (wY) and 2 others (wP and wR) are inputs in next modules.

Piotr Kozierski, Marcin Lis, Andrzej Królikowski

172

 In a similar way 32-bit number generator was created, for parameters
136314881222a 02127 and 18433222c 01114 .

4.1. Logical functions in modules

 Functions are different depending on the number of inputs. Marks & and |
means respectively logical operations AND and OR, ^ means XOR, whereas ~
means NOT. Logical functions describing the module outputs are presented
below:
 for 2-bit summing module (inputs A and B)
 B^AYw (6)
 B&APw (7)
 for 3-bit summing module (inputs A, B and C)
 C^B^AYw (8)
 B|A&C|B&APw (9)
 for 4-bit summing module (inputs A, B, C and D)
 D^C^B^AYw (10)
 D|B&C|A|D|C&B|A&R~P ww (11)
 D&C&B&ARw (12)
 for 5-bit summing module (inputs A, B, C, D and E)
 E^D^C^B^AYw (13)
 B&A|E|C&D|B|A|E|D&C|B|A&R~P ww (14)
 E&D&B&A|E&D&C&B|A|E|D&C&B&ARw (15)
 for 6-bit summing module (inputs A, B, C, D, E and F)
 F^E^D^C^B^AYw (16)

 F|C&D|B|E|C|B&F|D|A|F|E|D&C|B|A&

&F&E&D&C&B&A|R~P ww (17)

 D&C&B&A|F&E&B&A|

|F&E&D&C|F|E&D|C&B&A|
|F|E&D&C&B|A|F&E&D|C&B|ARw
 (18)

5. TIME SIMULATION RESULTS

 The sequence of generated numbers obtained during simulation of created
module was correct, which confirm the correctness of implementation.

Implementation of fast uniform random number generator on FPGA

173

 Time after which module output was steady also has been taken into account.
After generating 1000 consecutive numbers, the longest time period obtained for
the “slow model” was 16.725 ns and for “fast model” – 7.338 ns. One can
assumed that the maximum time generation of pseudo-random numbers on real
FPGA unit will be between the values obtained from simulations.
 All time simulations were made using ModelSim® Altera® 6c and Quartus® II
10.1 Web Edition programs.

6. SUMMATION

 The article proposed the method of generating pseudo-random numbers by an
appropriate choice of generator parameters – thus obtained numerical sequence
had to have the best properties. Simultaneously take into account that the selected
parameters should provide high-speed operation of the module (1 clock cycle on
the test FPGA lasts 20 ns). Based on the simulation one can conclude that the
module has been built properly.

Further research will aim to verify the operation of the generator on a real
system and the implementation of pseudo-random number generator with a
Gaussian distribution.

REFERENCES

[1] Ahrens J. H., Dieter U., An Alias Method for Sampling from the Normal

Distribution, Computing, Vol. 42, No. 2-3, 1989, pp. 159-170.
[2] Knuth D. E., The Art of Computer Programming, Addison-Wesley Publishing Co.,

Vol. 2 Seminumerical Algorithms, 1981, pp. 1-37.
[3] Lee D. U., Luk W., Villasenor J. D., Zhang, G., Leong P. H. W., A Hardware

Gaussian Noise Generator Using the Wallace Method. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, Vol. 13, No. 8, 2005, pp. 911-920.

[4] Leva J. L., A Fast Normal Random Number Generator, ACM Transactions on
Mathematical Software, Vol. 18, No. 4, December 1992, pp. 449-453.

[5] Marsaglia G., Tsang W. W., The ziggurat method for generating random variables,
Journal of Statistical Software, Vol. 5, No. 8, 2000, pp. 1-7.

[6] Mountney J., Obeid I., Silage D., Modular Particle Filtering FPGA Hardware
Architecture for Brain Machine Interfaces, Conf Proc IEEE Eng Med Biol Soc.
2011, pp. 4617-4620.

[7] Zieliński T., Cyfrowe przetwarzanie sygnałów: Od teorii do zastosowań,
Wydawnictwa Komunikacji i Łączności, Warszawa 2007, pp. 1-38.

