PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure and properties of tin bronzes produced by the SPD method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article the structural and mechanical properties of grain refinement of Cu-Sn alloys with tin content of 10%, 15% and 20% using the KOBO method have been presented. The direct extrusion by KOBO (name from the combination of the first two letters of the names of its inventors – A. Korbel and W. Bochniak) method employs, during the course of the whole process, a phenomenon of permanent change of strain travel, realized by a periodical, two-sided, plastic metal torsion. Moreover the aim of this work was to study corrosion resistance. The microstructure investigations were performed using an optical microscope Olimpus GX71, a scanning electron microscope (SEM) and a scanning transmission electron microscope (STEM). The mechanical properties were determined with INSTRON 4505/5500 machine. Corrosion tests were performed using «Autolab» set – potentiostat/galvanostat from EcoChemie B.V. with GPES software ver. 4.9. The obtained results showed possibility of KOBO deformation of Cu-Sn casting alloys. KOBO processing contributed to the refinement of grains and improved mechanical properties of the alloys. The addition of tin significantly improved the hardness. Meanwhile, with the increase of tin content the tensile strength and yield strength of alloys decrease gradually. Ductility is controlled by eutectoid composition and especially δ phase, because they initiate nucleation of void at the particle/matrix interface. No significant differences in the corrosion resistance between cast and KOBO processed materials were found.
Słowa kluczowe
Twórcy
autor
  • Institute of Non-Ferrous Metals, 5 Sowińskiego Str., 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Faculty Materials Engineering and Metallurgy, 8 Krasińskiego Str., 40-019 Katowice, Poland
autor
  • Institute of Non-Ferrous Metals, 5 Sowińskiego Str., 44-100 Gliwice, Poland
Bibliografia
  • [1] I. V. Alaxandrov, R. Z. Valiev, Scripta Mater. 44, 1605-1608 (2001).
  • [2] P. B. Prangnell, J. R. Boven, Gholinia A. International Symposium on Materials Science DK: Risø,105-126 (2001).
  • [3] A. Neishi, T. Uchida, A. Yamauchi, K. Nakamura, Z. Horita, T. G. Langdon, Mate. Sci. and Engineering A307, 23-28(2001).
  • [4] R. Z. Valiev, O. A. Kaibyshev, R. I. Kuznetsov, R. Sh. Musalimov, N. K. Tsenev, Dokl. Akad. Nauk SSSR 301, 964 (1988).
  • [5] W. Bochniak, Teoretyczne i praktyczne aspekty plastycznego kształtowania metali. Metoda KoBo, Kraków, Wyd. AGH 2009.
  • [6] J. Kawałko, P. Bobrowski, P. Koprowski, A. Jastrzębska, M. Bieda, M. Ładoga, K. Sztwiertnia, Journal of Alloys and Compounds 707, 298-303 (2017).
  • [7] A. Korbel, J. Pospiech, W. Bochniak, A. Tarasek, P. Ostachowski, J. Bonarski, Int. J. Mater. Res. 102, 464-473 (2011).
  • [8] L. X. Kong, P. D. Hodgson, Mater. Sci. Eng. A 308, 209-215 (2001).
  • [9] D. Orlov, Y. Todaka, M. Umemoto, N. Tsuji, Mat. Sci. and Eng. A 499, 427-433 (2009).
  • [10] I. Sabirov, M. Y. Murashkin, R. Z. Valiev, Mater. Sci. Eng. A 560, 1-24 (2013).
  • [11] A. Vinogradov, T. Ishida, K. Kitagawa, V. I. Kopylov, Acta Mater. 53, 2181-2192 (2005).
  • [12] W. Huang, L. Chai, Z. Li, X. Yang, N. Guo, B. Song, Materials Characterization 114, 204-210 (2016).
  • [13] X. Chen, Z. Wang, D. Ding, H. Tang, L. Qiu, X. Luo, G. Shi, Materials and Design 66, 60-66 (2015).
  • [14] J. Hui, Z. Feng, W. Fan, X. Yuan, Materials Charakteryzation 144,611-620, (2018).
  • [15] A. Korneva, B. Straumal, A. Kilmametov, L. Lityńska-Dobrzyńska, G. Cios, P. Bała, P. Zięba, Mater. Charact. 118, 411-416 (2016).
  • [16] A. Korneva, B. Straumal, R. Chulist, A. Kilmametov, P. Bała, G. Cios, N. Schell Mat. Lett. 179, 12-15 (2016).
  • [17] R. Gupta, S. Srivastava, N. Kishor Kumar, S. K. Panthi, Materials Science &Engineering A 654, 282-291 (2016).
  • [18] J. Subramanian, Z. Loh, S. Seetharaman, Abdelmagid S. Hamouda, M. Gupta, Metals 2, 178-194 (2012).
  • [19] T. C. Tszeng, Composites B 29B, 299-308 (1998).
  • [20] K. Purazrang, K. U. Kainer, B. L. Mordike, Composites 22, 456-460 (1991).
  • [21] N.J Musson, T. M. Yue, The effect of matrix composition on the mechanical properties of squeeze-cast aluminium alloy-Saffil metal matrix composites, Mater. Sci. Eng. A 135, 237-242 (1991).
  • [22] B. Alili, D. Bradai, P. Zieba, Materials Charakterization 59, 1526-1530 (2008).
  • [23] W. Głuchowski, Z. Rdzawski, J. Sobota, J. Domagała-Dubiel, Arch. Metall. Mater. 61 (2B), 1207-1214 (2016).
  • [24] K. Rodak, J. Sobota, W. Głuchowski, Mater. Sci. Forum 890 (1662-9752), 327-330 (2017)
Uwagi
EN
1. The study was conducted within the scope of Statutory Work of Institute of Non-Ferrous Metals "Development of basic engineering for production of tin bronze rods with increased tin content using severe plastic deformation”.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-167bf585-426d-4c58-a287-83e2a338faf0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.