
COMPUTER
METHODS
IN MATERIALS
SCIENCE

COMPUTER
METHODS
IN MATERIALS
SCIENCE

COMPUTER
METHODS
IN MATERIALS
SCIENCE

COMPUTER METHODS IN MATERIALS SCIENCE

2021, vol. 21, no. 4, 219–232
https://doi.org/10.7494/cmms.2021.4.0775

http://www.cmms.agh.edu.pl/� ISSN 1641-8581219

A dedicated sensitivity analysis
and optimization application

for industrial processes

Kamila Myczkowska* , Danuta Szeliga

AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland.

Abstract
The paper describes the architecture and the use case of the developed Modelbox system for sensitivity analysis (SA), un-
certainty analysis (UA) and the subsequent optimization of industrial processes. The proposed solution addresses the most
common practical and technical problems encountered by researchers and engineers when performing sensitivity analysis. It
combines the functions from the numerical toolbox with a simulation management system. Maintaining usability and a good
user experience while managing complex investigations of time-consuming industrial process simulations is a very important
feature of the system. Several improvements were introduced to optimize the computation time of analysis/modelling tasks,
including the automatization of distributed calculations, persistent, transparent caching of simulation data and duration esti-
mations from collected statistics. The system has the ability to perform remote, parallel, asynchronous computations of both
analytic algorithms and numerical simulations. The system is dynamically scalable horizontally by using serverless computing
endpoints and thus it can be easily adapted to the user’s current needs in a flexible way. Modelbox provides web-based access
to analysis/modelling tasks from sampling, SA/UA, optimization to metamodelling. It is extended with numerous interactive
visualization components for effective results control. In addition, to access data from the completed analysis, the system sup-
ports convergence tracking for SA estimates and intermediate optimization results.

The process of controlled cooling of rails was considered as a case study. The formulated optimization task was to find
a combination of process parameters that ensures a minimum volume fraction of bainite along with required interlamellar spac-
ing and optimal homogeneity of hardness. Different sensitivity analysis methods were used to evaluate the significance of all
variables with respect to their influence on the model output.

Keywords: sensitivity analysis, modelling of industrial process, optimization, model validation, cooling of rails

* Corresponding author: kamila.myczkowska@gmail.com
ORCID ID’s: 0000-0002-1626-7960 (K. Myczkowska), 0000-0002-2915-8317 (D. Szeliga)
© 2021 Authors. This is an open access publication, which can be used, distributed and reproduced in any medium according to the
Creative Commons CC-BY 4.0 License requiring that the original work has been properly cited.

1. Introduction

Sensitivity analysis (SA) is the study of how variations
in the output of a numerical model can be attributed
to variations in its input parameters. It provides infor-
mation on how well the model resembles the process
under study by making it possible to identify which pa-
rameters and regions contribute most to output variabil-
ity. By a parameter, we mean any independent variable

that varies in a model, while by region, we mean the
boundaries of the input space that are set on that param-
eter. Sensitivity analysis can be used in different ways
during the modelling of a process. The main areas of
application include the design of experiments (DOE),
model definition, calibration and validation. One of the
most common applications is to simplify the process
model by eliminating unimportant parameters in order
to reduce the computational cost of the execution of

http://www.cmms.agh.edu.pl/
https://orcid.org/0000-0002-1626-7960
https://orcid.org/0000-0002-2915-8317
mailto:kamila.myczkowska@gmail.com
https://orcid.org/0000-0002-1626-7960
https://orcid.org/0000-0002-2915-8317
https://creativecommons.org/licenses/by/4.0/

Computer Methods in Materials Science� 2021, vol. 21, no. 4

K. Myczkowska, D. Szeliga

220

the model. On the other hand, it can indicate impor-
tant parameters and regions which require more precise
handling. Some SA methods give information about
interactions between input parameters, which can also
be valuable.

SA is often used in conjunction with uncertainty
analysis (US). The main objectives of UA are to quanti-
fy the influence of the uncertainties of model parameters
on its prediction. It helps to learn how stable the pro-
cess’s result is and recognize whether the process is dif-
ficult to control due to an excessive influence of param-
eter uncertainties on the model output. SA/UA is a very
useful tool for complex and black-box models and its
application is increasing (Douglas-Smith et al., 2020).

The methods of SA are currently less frequently
used in the field of industrial processes modelling com-
pared to other areas, especially environmental models.
The main reason for this is the very high computation-
al cost of average industrial simulation. Models of in-
dustrial processes are often based on the finite element
method or other numerical methods, all of which are
time-consuming. Thus, SA and UA, which require
many simulation runs, become even more challenging.
Furthermore, the non-linearity and multimodality of
the models force the use of non-deterministic optimi-
zation methods, and they require many model simula-
tions. Therefore, the identification of model parameters
or the design of an optimal industrial process are com-
putationally costly and complex.

Another obstacle to SA/UA application in the in-
dustry is a relatively small number of control variables
of processes, which are usually not more than sever-
al. A small parameter space decreases the importance
of reducing non-influenceable parameters. Howev-
er, technological progress and a better understanding
of industrial processes cause the designs to be more
complex, and the number of process parameters is also
increased. On the other hand, this trend can make the
applications of SA/UA even harder due to technical
limitations related to the curse of dimensionality. As
the number of parameters increases, the volume of the
problem space grows exponentially, which means that
a small number of samples cannot properly character-
ize the model. Thus, the convergence of the algorithms
is slow and their results are less reliable. This obstacle
to the practical SA/UA applications is confirmed by
a survey conducted by Sheikholeslami et al. (2018).
About 70% of the SA applications in the environmen-
tal modelling literature were performed on models with
less than 20 parameters.

Major ambiguities also challenge the researchers
in the field of sensitivity analysis, caused by dynamic
development followed by a lack of practice guides on

SA/US performance. There are many algorithms for SA
and UA, but many provide different results. Therefore,
the choice of the right method for SA is far from trivial
and should depend on numerous aspects, including the
number and distribution of input parameters, number
of model outputs, time of a single simulation run, tech-
nical limitations and main purpose of the analysis. To
outline the scope of the problem, Saltelli et al. (2019)
found that up to about 40% of the highly cited papers
did not meet the elementary requirement of correctly
exploring the space of input parameters.

As mentioned above, process simulations can be
computationally expensive, but in many cases they
can be performed relatively easily, both in parallel
mode and in a distributed environment. The majority
of sensitivity analysis methods and some optimization
methods (or at least parts of them) can also be paral-
lelized. Another aspect of dealing with the industrial
process is that it often requires collaboration with oth-
er professionals and also consists of many subtasks
that need to be managed, such as testing different sce-
narios, SA/UA, optimizations, and convergence anal-
ysis. In addition, these subtasks can take a lot of time
to be completed and can also be interdependent upon
one another.

2. Sensitivity analysis support
in remote simulation environments

In recent years, a variety of software tools have been
developed to provide users with UA/SA methods.
Douglas-Smith et al. (2020) collected an extensive
list of the most popular packages: SAFE, SimLab,
MCAT, Gui-HDMR, UQ Lab, GLUE, R Sensitivity
are dedicated solutions for Matlab and R. There are
also Python libraries (SALib, again SAFE), Fortran
and C/C++ (Dakota, PSUADE, PEST/PEST++). One
of the newest in this area is VARS-TOOL, compatible
with Matlab, C++ and Python.

VARS-TOOL and SAFE, which are among recent-
ly developed packages, focus on good SA/UA practic-
es. Pianosi et al. (2016) outlined some of them, includ-
ing the possibility of reusing one sample for several SA
methods, tools for accessing and revising user choices
and visualization tools. The impact is put on advanced
sampling techniques and SA methods for nonlinear
models. Both SAFE and VARS-TOOL offer the user
a robustness assessment and convergence analysis
without further model runs. Compared to older librar-
ies, new ones offer better protection against improper
use. The awareness of the importance of good practices
is increasing.

2021, vol. 21, no. 4� Computer Methods in Materials Science

A dedicated sensitivity analysis and optimization application for industrial processes

221

The capabilities of the packages make them very
powerful tools, but often at the expense of simplicity.
Very few packages have graphical user interfaces, in-
stead usually relying heavily on scripts. As mentioned
above, it can be difficult to select the right SA meth-
od. Well-designed GUI can play a useful role there by
guiding the user, prohibiting improper use by early
validation or warning about potential limitations. Al-
though a script-based approach provides more flexibili-
ty, a certain level of programming skills and experience
is required. That makes almost impossible to use the
tool easily without familiarity with the library API or
documentation. Having to develop your own scripts
can put potential users off, especially while SA/UA
is treated as an optional task for model verification or
knowledge acquisition.

The details of simulation management are usually
hidden in low-level libraries. Most such libraries focus
on providing a comprehensive toolkit for performing
sensitivity analysis while leaving the user with full re-
sponsibility for efficiently managing the tasks associat-
ed with the modelling. The libraries can be integrated
with other external systems to which they transfer re-
sponsibility for resource and simulation management,
but this requires additional work and knowledge. There
are some exceptions, e.g. SAFE is already integrated
into the optimization software tool OSTRICH, and ad-
ditionally, it supports some parallelization.

Among many tasks that can be performed on
a model are a generation of samples sets, SA/UA, met-
amodelling, and optimization. Some tasks may depend
on others, and the dependence is not always obvious.
For example, metamodels are known as a replacement
of computationally costly original models in optimi-
zation tasks, but they can also be used as a model re-
placement in the case of sensitivity analysis. A reverse
relation is also possible: a large number of samples
generated during sensitivity analysis can be reused
as training samples for metamodel. The dependency
forces the sequence of task execution and due to lim-
ited resources, the need for a queuing mechanism. For
long-running simulations, it is important to parallelize
and distribute the computations. Hence, a complex
model with many input and output parameters and nu-
merous model tasks would be very difficult to manip-
ulate with a low-level API. Therefore model manage-
ment tasks are handled by separate systems dedicated
to the remote execution of numerical simulations. Such
systems should be able to handle problems closely re-
lated to distributed computing, such as load balancing,
job queuing, on-demand resource provisioning, hori-
zontal scaling of the architecture and self-healing of re-
sources. To facilitate the development of experiments,

users should also be separated as far as possible from
the highlighted aspects of a system.

The first distributed simulation management plat-
forms appeared over ten years ago. The problem of
integration of various middleware components and
services for grid platforms is the subject of Radecki
et al. (2012). Among others, GridSpace2 and Scalarm
are well known distributed implementations aimed at
executing remote simulations using a distributed archi-
tecture. GridSpace2 environment constitutes a compre-
hensive platform that supports the whole e-science ap-
plication lifecycle including development, execution,
and result analysis as Ciepela et al. (2012) described.
The system enables researchers to conduct virtual ex-
periments on grid-based resources and other infrastruc-
tures. The GridSpace2 user-friendly web-based inter-
face assists in the design of the experiment. The system
facilitates the development of simulations by using
high-level script languages like Ruby, Python, Perl and
also bash. Developers can choose from many packag-
es dedicated to handle various grid resources. Scalarm
(Scalarm, n.d.) is a massively self-scalable platform,
which enables conducting data experiments with het-
erogeneous computational infrastructure. It works with
different architectures like PL-Grid, Clouds and private
resources. The system allows users to dynamically
monitor simulation executions and use built-in tools for
results analysis. Simulations can be parallelized, and
Scalarm is responsible for the coordination of distribut-
ed executions. The system is distributed as open-source
under an MIT License.

Both GridSpace2 and Scalarm provide an environ-
ment for designing and performing the computer ex-
periments, however, they are not integrated by default
with sensitivity analysis methods. Although Scalarm
has a number of input data generators, it does not have
embedded sensitivity analysis methods in the current
version, which places the responsibility to implement
them on the user. A numerical library to address that
problem has been prepared by Rauch et al. (2014). The
library is dedicated to the generation of input samples
for Morris and Sobol’ methods and submitting them to
Scalarm.

3. Modelbox system overview

The main idea of the developed Modelbox system is
to prepare a framework for a modeller that combines
data modelling tasks with a comprehensive set of sen-
sitivity and uncertainty analysis methods while being
independent of external systems. Modelbox combines
low-level SA/UA features and optimization libraries

Computer Methods in Materials Science� 2021, vol. 21, no. 4

K. Myczkowska, D. Szeliga

222

and enhances them with resource management features
from remote simulation environments. The system of-
fers the possibility to perform reliable SA/UA based
on numerical simulations with a minimum amount of
work needed. This goal is achieved in several ways.
Modelbox has a number of tools dedicated to 1) data-
set generation and 2) further analytical/modelling tasks
(SA/UA, metamodelling, optimization):

1.	 The definition of sample set is usually the starting
point of the modelling workflow. It is required for
all operations on the model, including optimiza-
tion. Samples can be submitted by the user or gen-
erated using various designs, including random,
full factorial, fractional factorials and latin hyper-
cube sampling. A new sample can also be obtained
by merging existing samples or narrowing them to
match custom filtering criteria. For more local an-
alytics, the user can either limit sampling to arbi-
trary subspace or decide to generate random sam-
ples in the neighbourhood of a selected point, with
a uniform or Gaussian probability distribution.

2.	 Modelbox contains implementations of the fol-
lowing global sensitivity analysis methods, which
are described in detail by Saltelli et al. (2009) and
Morris (1991): Morris method, full and fractional
factorial design, Pearson correlation coefficient,
Sobol’s first order and total-effect indices, chi-
squared test of independence, VARS measures
proposed by Razavi et al. (2016) and graphical
methods: parallel coordinates plot, matrix scatter-
plot. Morris and Sobol’s algorithms have prede-
fined variants based on jackknife and incremental
resampling strategies, targeted at estimating the
precision of SA results for a specified number of
samples. For all SA methods, the user can choose
for which inputs SA should be computed, leaving
others fixed, and define boundaries for them. Un-
less the method enforces a specific sampling strate-
gy, a set of initial samples can be defined, allowing
for flexible reuse of samples for different methods.
The system also supports building metamodels
(Kriging, Radial Basis Functions – Xiong et al.,
2006), uncertainty analysis (bootstrap confidence
intervals, histograms and Cumulative Distribution
Functions – CDF diagrams) and optimization al-
gorithms (Nelder Mead, Particle Swarm Optimi-
zation (PSO), genetic algorithms (GA) and oth-
ers – Kochenderfer et al., 2019). The implemented
algorithms were verified on Sobol-g and Legendre
polynomials’ classical benchmark functions.

The system works with different types of models,
including executable files and script files by using mod-

el adapters. If the user does not have an actual simula-
tion model, but only simulation results (probably from
experimentally collected data), the system can be still
useful. However, its functions will be limited to meth-
ods that do not require new model calls, such as matrix
scatterplot visualization. To overcome this limitation,
a metamodel can be built on available data and then it
can be used as an ordinary model.

Simulation configuration parameters, boundaries,
and values of fixed parameters that have been select-
ed for subsequent calculations are grouped together in
entities called ‘specifications’. A specification param-
eter can be both a technical parameter and inputs that
are not the subject of analysis. In both sampling and
analysis tasks, the specification is used as an argument,
which allows for a flexible investigation of many mod-
el variants.

After the simulation execution is complete, the
system calculates the simulation’s average sequential
and parallel duration. Thus, it is possible to give the
end-user estimation of how much the potential exe-
cution of the task will take for a given configuration
(samples size, etc.), both in time and in a number of
simulation runs. It also considers that the results of
the previously completed simulation are permanently
cached, which leads to a more precise estimation. If
the average cost of a single sequential simulation run
is high and the simulation cannot be easily parallelized,
the best sensitivity methods are those which do not
require additional simulation runs or require a small
number of simulation runs. Variance-based methods
are not a good choice, while graphical methods and the
Morris algorithm are a better selection. If the model is
developed on the basis of experimental data and new
samples cannot be generated, methods that impose
a specific way of sampling are also not applicable.

The system is capable of automatic caching sim-
ulation results. Before the simulation is executed, the
system checks whether the result for the specified sam-
ple is already in a cache. If there is a match, the result is
retrieved from the cache. Otherwise, control is passed
to the original model, and the new result is saved in
the memory after processing. This approach supports
the minimization of the number of model runs and is
especially useful when working on the same data while
investigating complex, computationally costly process
simulations. Cache storage can be reused by different
analysis and optimization methods. It can be especially
useful when testing different versions of a model, which
is common practice in industrial process modelling.
Examination of an industrial process chain with a mod-
ified single process, when most of the results remain the
same, would be an example of this. The system can also

2021, vol. 21, no. 4� Computer Methods in Materials Science

A dedicated sensitivity analysis and optimization application for industrial processes

223

minimize the cost of performing SA/UA, e.g. by auto-
matically reusing results from simulation runs needed
by SA/UA as starting points for optimization. Current-
ly, the cache only returns results for exactly the same
data samples, but it potentially can be extended with
metamodel with the desired level of accuracy.

Sensitivity analysis measures alone do not contain
information about how stable the solution is, which is
described below. With small sample sets, the results
may be highly biased and may possibly lead to mis-
leading conclusions. For this reason, convergence and
robustness analysis was introduced in the form of Jack-
knife and incremental (one-more-sample-at-a-time)
methods. They are intended to automatically calculate
the variance of measures for both Morris and Sobol’s
methods. To minimize the number of additional sim-
ulations, the new versions of these methods were de-
veloped and introduced to the system. They work on
subsets of samples, and they are independent of the
number of omitted samples. In the Morris algorithm,
the distortion of each parameter is calculated with re-
spect to the total sample number.

The implemented analytic/modelling algorithms
have built-in support for parallel model execution
where it is applicable. A further reduction of their over-
all computing time is achieved by distributing the sim-
ulation executions among working nodes. Each model
can be packed into a single Java archive package (JAR)
together with the required resources (such as configu-
ration and executable files) and uploaded to the system.
It is then automatically distributed to local and remote
working nodes. The system takes care of unpackaging
and executing the simulation itself, followed by divid-
ing the workload of analytic/modelling tasks among the
nodes.

For an even more flexible compute service, mod-
els can be wrapped in serverless lambdas deployed in
the cloud (for example, in Amazon cloud, AWS, n.d.),
using and producing JSON resources. This scenario al-
lows using models written in any language supported by
the cloud. For AWS, natively supported runtimes are:
Java, Go, PowerShell, Node.js, C#, Python, and Ruby.
The platform charges only for a number of requests and
time of code execution. It fits in the dynamic needs of
the simulation environment very well, where the load is
highly variable: by default, very low, interrupted with
high peaks when analytical tasks trigger many concur-
rent simulations. Moving simulation codes to lambdas
reduces the responsibility to overprovision servers to
cope with peak load.

The Modelbox queuing mechanism makes it pos-
sible to create dependent tasks in advance. It allows the
user to compose workflow from the user interface with-

out having to wait for previous tasks to complete. This
allows unfinished computations to be chained as inputs
for subsequent tasks. The dependent task automatically
waits until the blocking task is completed and/or re-
sources are available. An example of such a workflow
could be:

	– performing optimization using PSO,
	– performing Simplex optimization for the best op-

timum from PSO,
	– performing UA for the best optimum from Sim-

plex optimization.

Based on the available analytic/modelling tasks,
the application supports the methodology shown in
Figure 1 for developing a model and its subsequent op-
timization, which includes the following steps:

	– model definition (including a selection of input/
output parameters),

	– selection of the experiment design, the choice of
sample size and sensitivity analysis methods,

	– sensitivity analysis – together with its validation,
	– model validation in terms of verification that the

data collected is of physical meaning,
	– model calibration – review previously selected pa-

rameters, response variables and their ranges,
	– calibration of the optimization method by choos-

ing optimization method, adjusting optimization
parameters (like PSO swarm size based on param-
eters non-linearity or GA crossover rate based on
sensitivity indices),

	– optimization of the process,
	– uncertainty analysis.

Definition of the process model

Sensitivity analysis

Model validation

Model calibration

Optimization method calibration

Optimization of process

Uncertainty analysis

Model
execution

cache

Fig. 1. Methodology of optimization procedure

http://Node.js

Computer Methods in Materials Science� 2021, vol. 21, no. 4

K. Myczkowska, D. Szeliga

224

The sensitivity analysis process can be divided into
two phases for long-running simulations. In the first, the
screening methods should be performed to identify the
most influential parameters, and for only indicated ones
more detailed analysis should be performed.

The Modelbox user interface is fully web-based.
The visual representation of the tasks in the web appli-
cation is shown in Figure 2. Each analytical task is rep-
resented as a navigable, searchable element in a tree on
the left side. It is placed as a child node under the task
it depends on. If it depends directly on more than one
task, additional dependencies are displayed as tags next
to its name. Tasks are grouped by specifications, which
are the first items under the root. Tasks can be searched
by a unique id, associated tags and name. If not explic-
itly specified, the latter is defined as a concatenation of
inherited prefix, algorithm name and sometimes also
sample size. All of this facilitates the ease of tracking
the origin of tasks.

The Modelbox frontend helps the user to config-
ure, execute, supervise and analyze tasks remotely.
Tasks can be dynamically removed and added with-
out the need to restart the workflow, which might be
required in the case of a script-based approach. If
a task fails, only the dependent tasks are not complet-
ed, but the others are not blocked. Tasks results are
displayed as separate, draggable and resizable blocks
on the grid. By clicking on the header of the block,
information about the task can be viewed along with
its configuration start time and duration. Some task
types, such as optimizations or sampling methods, en-
able previewing intermediate results before they are
completed.

The state of the grid is stored in the backend. The
grid allows for flexible visual grouping of tasks accord-
ing to the user’s needs. For example, it facilitates the
comparison of results between different datasets by
placing them next to each other. The results of the anal-
ysis are visualized in real-time with interactive compo-
nents, without which the graphical methods of SA/UA
would be less useful. Parallel coordinates plot may in-
dicate relevant correlations and subregions of parame-
ter space or filter out dense data to be more meaningful.
The results can also be downloaded as excel spread-
sheets for further processing.

4. System architecture

The main architecture of the developed system is pre-
sented in Figure 3.

Modelbox Core Library contains the main com-
putational model and analysis/modelling toolkit, in-
cluding optimization, metamodelling and SA/UA. It
can be used separately from other modules, directly
from the command line or as a Java library. Modelbox
Simulation Manager (MSM), built around the core li-
brary, adds features related to model execution man-
agement such as scheduling model executions, super-
vising analytical/modelling tasks executions, caching,
saving and combining results. Modelbox Web Client is
a frontend module for MSM, accessible through a web
browser. Model Repository is a local repository con-
taining executable codes with simulation definitions
in the form of JAR packages. Depending on model
configuration, MSM can either run one or more sim-

Fig. 2. The main view of the application with an example model

2021, vol. 21, no. 4� Computer Methods in Materials Science

A dedicated sensitivity analysis and optimization application for industrial processes

225

ulations locally (in the same Java Virtual Machine),
dispatch execution to one or more execution nodes
or model lambdas. Modelbox Node is an optional re-
mote model execution environment designed for effi-
cient horizontal scaling. It accepts packages sent from
MSM (and initially fetched from Model Repository)
that contain model implementation and configuration.
The received package is then deployed, and Modelbox
Node coordinates model’s execution. It is capable of
executing many model runs of different simulations at
the same time. It exposes RESTful API for commu-
nication with MSM. Except for JAR package, remote
models can also take the form of lambda serverless
functions, but automatic deployment in the cloud is not
yet implemented for that case.

Modelbox has been designed to facilitate the inte-
gration of new models and the algorithms working with
them. The universal model interface called Model is de-
signed to hide the real model behind itself, decouple it
from other parts of the system and translate it into the

form understood by other modules. The schema of the
core Modelbox classes used by the interface is shown
in Figure 4.

Specification is a map that contains all configura-
tion parameters of the model. For example, fixed mod-
el’s parameters or, where applicable, desired number of
parallel instances. It is mostly up to the user and specif-
ic cases what configuration parameters should be kept
inside specification. The specifications field parame-
ters hold a description of input and output variables,
including their ranges and distribution (for inputs).
Most of the parameter descriptions are optional, with
only the parameter name required because it is used for
accessing sample values.

Input is a container for samples and specifications
that is passed for each simulation execution. Samples
are containers of input/output parameter values. By de-
fault, it is a wrapper for arrays of doubles, where each
array corresponds to a different parameter. For more
advanced uses, a sparse version can be implemented.

Fig. 3. The architecture of Modelbox

Computer Methods in Materials Science� 2021, vol. 21, no. 4

K. Myczkowska, D. Szeliga

226

Fig. 4. Schema of core Modelbox objects

To plug one’s own model to work with the system,
one only needs to implement the two methods listed
below:

Specification getSpecification
(@Nullable SpecificationQuery query)

Output process(Input input)

The getSpecification method returns the specifi-
cation provided by a model. It should contain at least
information about parameters and model name as it is
aimed mainly at configuring and managing the mod-
el for a graphical environment. The query argument
allows returning dynamic specifications based on the
caller’s criteria. If it is not set, then the default specifi-
cation should be returned.

The process method reads the values of the in-
put parameters from the supplied samples and updates
the values of the output parameters. If no specification
is provided, the default one is used. This basic set of
functionality is sufficient for most sample generators,
SA/UA methods and many optimization methods.
The presented design allows for easy embedding and
chaining models with each other. In case there were er-
rors during processing, the corresponding information
in the Output is updated. This way, if some samples
cannot be processed, the ones that are completed suc-
cessfully still can be returned to the caller. The index
in the OutputError refers to the index of the sample
that caused the error, or the index is not set if the prob-
lem is global. The code refers to a type of error, so the
caller can react to the problem respectively. The HTTP
response status codes have been chosen, so the caller

can distinguish automatically between the client (4xx)
and server errors (5xx). In the case of client errors, the
algorithm may decide to replace the sample with the
valid one, and in the case of server error it may throw
an exception.

Design is prepared for RESTful integration. Sche-
ma classes can be easily converted to/from JSON for-
mat for interoperability reasons. The process method
takes intentionally only one parameter so it can be sent
as a body of HTTP post request. Objects are kept as
simple as possible to minimize unnecessary network
bandwidth. It can be noticed that the Specification ob-
ject is passed as an Input field every time process func-
tion is called. This may seem redundant - but it isn’t
obligatory – the default version will be used when it’s
not provided. Nevertheless, some caching mechanisms
could still be implemented for multiple large specifi-
cations.

Thanks to Model interface, model executions
can be easily proxied and chained. MSM makes use
of some proxy implementations: (a) samples caching,
(b) adapters to different programming languages and
(c) parallel and/or remote executions. As a result of the
latter, an algorithm (SA, UA, optimization) can trans-
parently execute the target model remotely and concur-
rently, without any changes in its code. Of course, the
process method will block further calculations until all
results are returned, but many algorithms still will gain
significant speedup. Another proxy use case would be
the bulk optimization on the model level.

The models are intended to be stateless. The ex-
ample use case consists of two simulations on the same
operating system using the same directory for output-
ting some intermediate data. To ensure that concurrent

2021, vol. 21, no. 4� Computer Methods in Materials Science

A dedicated sensitivity analysis and optimization application for industrial processes

227

simulations will not collide with each other, the Spec-
ification object has seed – a unique identifier assigned
to all concurrent simulation instances, set and managed
exclusively by MSM. This way, the model can specify
the unique working directory based on the seed, and
copy inside the files that shouldn’t be shared by other
instances.

For models with automatically calculated differ-
entials of outputs with respect to the model parameters,
an additional interface has been designed:

DerivativeOutput computeDerivative-
Structre(DerivativeInput input)

where DerivativeOutput is a wrapper for Derivative
Structure class from commons-math3 library (Apache
Commons, 2021) and DerivativeInput is an extension
of Input class with additional derivative order informa-
tion (integer type).

The Modelbox core library is implemented in Java,
while the backend is in Kotlin. Java has been chosen
because of its popularity, especially for existing busi-
ness solutions and a large number of available libraries,
and Kotlin because of its full compatibility with Java
and the ability to write cleaner code than in pure Java.
Another reason was the lack of systems in Java similar
to a developed one, in contrast to the variety of solu-
tions offered by Python libraries. However, due to the
increasing popularity of Python/JavaScript in recent
years, the core library contains Python and JavaScript
model adapters (thanks to Jython, n.d. and Java runt-
ime library). As a consequence, dynamic script-based
models can be easily created, modified and executed
without the need for prior manual compilation.

A very important feature of the system is its use of
an asynchronous, non-blocking processing paradigm as
much as possible. The benefits of introducing reactiv-
ity are especially important for aggregator-type of ser-
vices that strongly depend on many external resources.
Modelbox belongs to this group because of delegating
simulations’ work to local and remote nodes. The reac-
tive approach eliminates the need to maintain a large
pool of threads that are most of the time in a sleeping
or waiting states. It results in the better utilization of
modern processors, although a significant difference is
visible only for high throughput workloads. To max-
imize benefits, it requires maintaining a non-block-
ing approach throughout the whole processing flow,
including scenarios like a) serving responses to web
page and b) performing simulations in the background
with asynchronous updates on the database. The used
technologies have been selected in order to fulfil this
assumption. Both Java and Kotlin offer asynchronous

solutions that allow the developer to avoid dependen-
cies among nested callbacks in the code. In the case of
Java, there is a family of reactive libraries like Reactor
or RxJava. In Kotlin there is an alternative approach
based on coroutines and suspension functions (Kotlin,
2021). The latter enabled to write asynchronous code
chunks in a sequential manner without much of boil-
erplate code. Parallelization of model execution has
also been achieved with the help of coroutines. For
each model definition, the specified number of model
instances (or model proxies delegating implementa-
tions to remote nodes) has been created. Each model
instance is associated with a coroutine block, which
executes until there are no more samples to process.
Ideally, the input/output operations should also be as
much as possible non-blocking. Both libraries chosen
for the web layer – Ktor (Ktor, n.d.) and persistence
layer – Kmongo (for accessing document-based data-
base MongoDB – MongoDB, n.d.) have support for
asynchronous processing.

The idea of reactivity can be extended even fur-
ther. In the ongoing code development, the reactive
version of the core model interface is being prepared,
adding to a model the time dimension. Because the core
library is written in Java, the Reactor (Project Reactor,
2021) library is used as follows:

Flux<Samples>
process(Flux<Samples>samples,
Specification specification)

Flux stands for a reactive streams publisher with
basic rx operators (ReactiveX, n.d.) that completes
successfully by emitting a single element or with an
error. Available operators include mapping, flat map-
ping, filtering, repeating, retrying, caching, delaying,
timeout handling, merging and combining publishers.
All of them can be used by algorithms that operate on
model, including optimizations and SA/UA calcula-
tions. Although most of the implemented analytical/
modelling tasks already run a group of models execu-
tions in parallel, there is always at least one place inside
the algorithm that blocks the thread waiting for results.
The biggest profits can be gain for tasks that have many
such blocking operations. It has to be noted that the re-
active approach on the model level imposes rewriting
algorithms to work in a reactive manner.

The backend of the system is created using the
Kodein (Kodein, n.d.), a library dedicated to dependen-
cy injection and maintaining a clear separation between
object creation/use phases. Such an approach, charac-
terized by loosely coupled elements, strictly based on
user interfaces and their implementations, allows the

https://www.reactive-streams.org/reactive-streams-1.0.3-javadoc/org/reactivestreams/Publisher.html?is-external=true

Computer Methods in Materials Science� 2021, vol. 21, no. 4

K. Myczkowska, D. Szeliga

228

system to maintain a good level of flexibility, simplic-
ity and modularity, as described by Prasanna (2009).
Interoperability is achieved by using JSON (JSON Ja-
vaScript Object Notation, n.d.) for configuration and
results specification. The system uses a lot of functions
from Commons-math3, a library dedicated to math op-
eration, numerical methods, statistics and optimization.
For processing large matrices, EJML (EJML, 2015)
was selected. For evaluation of math equations direct-
ly from string form, the system uses an Exp4j (Exp4j,
2017) library. Communication between frontend and
backend modules is based on stateless RESTful servic-
es created with the already mentioned Ktor. Independ-
ence on user session results in better scalability of the
solution. A server push technology SSE (Server-Sent
Events) over HTTP has been used for real-time client
updates.

The frontend module has been implemented in
TypeScript. React (React, n.d.) library has been em-
ployed for building a reactive user interface. For inter-
active 2D and 3D charts, Plotly (Plotly, 2020) library
has been selected. Rendering math equations in a web
browser is possible with MathJax (MathJax, n.d.) li-
brary that works with various formats, for example,
mathML, TeXand LaTeX. State management is han-
dled by the Redux (Redux, n.d.) architecture.

5. A case study

To demonstrate the use of the system, a model of the
controlled cooling of rails was selected as a case study.
The model predicted the temperature field during cool-
ing, the kinetics of phase transformations, microstruc-
tural parameters and mechanical properties of the final
product. It was described more precisely in Kuziak
et al. (2012). The process consisted of multi-stage im-
mersing of the railhead in a cooling solution intermit-
tently with cooling in the air. Such an approach should
have resulted in a decrease in the average temperature
of the pearlitic transformation while the occurrence of
the bainite was avoided. In consequence, fine pearlite
microstructure was obtained, which gave increased
abrasive wear strength, fatigue strength and resistance
to contact-fatigue defects. In the specified work, iden-
tification of the phase transformation model was per-
formed on the basis of dilatometric tests and inverse
analysis. During optimization the objective function
was formulated to give minimum possible interlamel-
lar spacing in pearlite, microstructure free of bainite
and uniform hardness distribution in the railhead. The
analysis of the specified model with the use of the Mod-
elbox system is presented below.

The external model was an executable file with sev-
eral configuration files with plain text format and output
redirected either to the standard output stream or output
file. The model has been wrapped in Modelbox adapter
and packaged into JAR file. Therefore, it could be run
in parallel or remotely. The average execution time was
decreased from 9 sec to 2 sec by employing 4 workers.

Three model parameters were selected as input:
austenite grain size (Dγ, µm), number of cooling in-
tervals (Cs, 1–9), and offset of heat transfer coefficient
(ΔHTC, W/m2K). The latter shifts the HTC(T) up and
down. Other parameters were fixed at their nominal val-
ues. The time of cooling interval was set to 10 s, and
the time between intervals was set to 20 s. The initial
step was to create n = 100 samples using latin hypercube
design and analyze the results visually. Result variables
were: bainite fraction (Fb, %), pearlite fraction (Fp, %),
average hardness (HVa, the average of Vickers hardness,
calculated by Milenin et al., 2020), hardness homogene-
ity (HVh) and interlamellar spacing (S0, µm, Milenin et
al., 2020). A pearlite fraction in steel after cooling with
respect to ΔHTC and Dγ is presented in Figure 5.

The results, presented in Figures 5–10, showed
large regions with negligible impact of optimization
variables on a fraction of bainite, pearlite, average hard-
ness and hardness homogeneity. It was also observed
that in the case of small grain size, the model was al-
most not sensitive for the ΔHTC and Cs, and Dγ was the
most important parameter. It turned out that the cooling
rate was too fast to start pearlite phase transformation,
and for a given cooling times, the region boundaries
could be shrunk. Therefore, sensitivity analysis was
conducted for the grain size 30% ±10% of the value
obtained in the previous process. Initially, methods that
do not require any additional model executions were
performed. The matrix scatterplot revealed a similar,
highly linear character of relations between parameters
HVa, Fp and S0. In chi-squared test, most of the param-
eters were classified as significant (for a significant lev-
el of 0.05). However, the heatmaps presenting areas of
high influence obtained using this test showed a large
difference in the sensitivity of the model. Parallel coor-
dinates plot allowed the investigation of the indicated
areas of parameters space and revealed a strong corre-
lation between HVh and Dγ. Next, the Morris method
was selected for execution on the initial sample-set.
The computational cost of new model invocations was
automatically calculated, and results for already exe-
cuted samples have been reused. The results revealed
the significant impact of Dγ and, what’s new compared
to previous methods, the impact of Cs. The deviation of
Morris’s elementary effects for both parameters indi-
cated possible non-linearity and interactions.

2021, vol. 21, no. 4� Computer Methods in Materials Science

A dedicated sensitivity analysis and optimization application for industrial processes

229

Fig. 5. Interactive 3D chart rendering Fp with respect to
Dγ and Cs, number of samples n = 100, sampling

type = LHS, cooling time = 10 s

Fig. 6. Interactive 3D chart rendering HVh with respect
to ΔHTC and Cs, number of samples n = 100, sampling

type = LHS

Fig. 7. Results of sensitivity analysis: parallel coordinates plot Fig. 8. Results of sensitivity analysis: chi-square test

Fig. 9. Results of sensitivity analysis: scatterplot matrix Fig. 10. Results of sensitivity analysis: Morris method,
sensitivity measures presented on the chart have been
normalized to allow for a comparison between different

outputs

Computer Methods in Materials Science� 2021, vol. 21, no. 4

K. Myczkowska, D. Szeliga

230

Summing up, all methods confirmed the great-
est impact of Dγ, therefore, it is important to control
that variable precisely. The significance of ΔHTC un-
der-researched conditions was negligible, so it could be
marked as a candidate for exclusion from the subse-
quent optimization.

The goal of optimization was to find a combina-
tion of parameters that minimizes the formulated ob-
jective function:

optGoal()x HVh Fb S� � � �2 2 20

An optimum was sought using a genetic algorithm.
The initial population consisted of the samples used for
computing sensitivity analysis. Moreover, Morris’s
sensitivity measures were used to modify crossover
probabilities in the following empirical way: for sig-
nificant parameters the probabilities were increased. In
that way, SA allowed reducing the number of solver
runs. After 200 model simulations, the following result
was obtained: optGoal(x) = 0.08 for ΔHTC = −132.16,
Dγ = 28.20, Cs = 7, HVa = 344.42, HVh = 0.07, Fb = 0,
Fp = 1, and S0 = 0.04. The results are presented in Fig-
ure 10. In the last step, the uncertainty analysis for the
optimum point was performed (Morris method on the
region ±5% of optimum sample, Fig. 11), which again
confirmed the high propagation uncertainty of input to
output for Dγ and Cs, and no significant ΔHTC impact
for a specified area.

Fig. 11. Interactive 3D chart rendering goal function with
respect to ΔHTC and Cs. All samples were taken from the
cache, which means they were previously passed to the
model, in the process of sensitivity analysis and optimization

Fig. 12. Results of Morris method performed for goal function
on the region ±5% of optimum

6. Summary

The presented system easily applies existing sensitivity
and uncertainty analysis methods to internal or external
simulations and combines them with other analytical/
modelling tasks. Analytical tasks can be created direct-
ly from the website, with a minimised need for pro-
grammer intervention. The system offers various tools
which are useful for preparing, designing, and execut-
ing computer experiments, like caching, concurrency
support, input/output files processors, and visualization
toolbox. The presented architecture can be adjusted to
one’s needs, starting from a low-level library through
a standalone system and finishing with a fully distribut-
ed system exploiting serverless simulations.

The system decreases the effort needed to perform
sensitivity analysis for the investigated industrial pro-
cess by automatizing such operations as sample prepa-
ration, sensitivity analysis method selection, concurrent
execution, and results visualization. The application
programming interface described in the paper has been
used to plug the existing model into the system. Sensi-
tivity analysis performed on an example model of the
industrial process allowed the most important parame-
ter which should be carefully controlled to be detect-
ed, and non-influential regions that had been excluded
from further calculations.

Future plans include completing reactive versions
of analytical/modelling tasks as well as integration with
new algorithms that have emerged recently in the field
(progressive latin hypercube sampling distributed eval-
uation of local sensitivity analysis).

References
Apache Commons (2021). Commons Math: The Apache Commons Mathematics Library. http://commons.apache.org/proper/

commons-math/.
AWS (n.d.). AWS Lambda. Run code without thinking about servers or clusters. https://aws.amazon.com/lambda/.

http://commons.apache.org/proper/commons-math/
http://commons.apache.org/proper/commons-math/
https://aws.amazon.com/lambda/

A dedicated sensitivity analysis and optimization application for industrial processes

Ciepela, E., Nowakowski, P., Kocot, J., Harężlak, D., Gubała, D., Meizner, J., Kasztelnik, M., Bartyński, T., Malawski, M.,
Bubak, M. (2012). Managing entire lifecycles of e-Science applications in the GridSpace2 Virtual Laboratory – from
motivation through idea to operable web-accessible environment built on top of PL-Grid e-Infrastructure. In M. Bubak,
T. Szepieniec, K. Wiatr (Eds.), Building a National Distributed e-Infrastructure – PL-Grid (pp. 228–239). Springer Ber-
lin, Heidelberg.

Douglas-Smith, D., Iwanaga, T., Croke, B.F.W., Jakeman, A.J. (2020). Certain trends in uncertainty and sensitivity analy-
sis: An overview of software tools and techniques. Environmental Modelling & Software, 124, https://doi.org/10.1016/
j.envsoft.2019.104588.

EJML (2015). Efficient Java Matrix Library. https://code.google.com/p/efficient-java-matrix-library/.
Exp4j (2017). http://www.objecthunter.net/exp4j/.
JSON JavaScript Object Notation (n.d.). Introducing JSON. Retrieved 2021 from http://www.json.org/.
Jython (n.d.). What is Jython?. Retrieved 2020 from http://www.jython.org/.
Kochenderfer, M.J., Wheeler, T.A. (2019). Algorithms for Optimization, The MIT Press.
Kodein (n.d.). Retrieved 2021 from https://github.com/Kodein-Framework/Kodein-DI/.
Kotlin (2021). Coroutines. https://kotlinlang.org/docs/reference/coroutines-overview.html.
Ktor (n.d.). Retrieved 2021 from https://github.com/Kotlin/ktor.
Kuziak, R., Pietrzyk, M. (2012). Numerical simulation of controlled cooling of rails as a tool for optimal design of this process.

Computer Methods in Materials Science, 12(4), 233–243.
MathJax (n.d.). Retrieved 2020 from https://www.mathjax.org.
Milenin, A., Zalecki, W., Pernach, M., Rauch, Ł., Kuziak, R., Zygmunt, T., Pietrzyk, M. (2020). Numerical simulation of man-

ufacturing process chain for pearlitic and bainitic steel rails. Archives of Civil and Mechanical Engineering, 20(4), 107,
doi.org/10.1007/s43452-020-00107-0.

MongoDB (n.d.). Retrieved 2021 from https://www.mongodb.com/.
Morris, M.D. (1991). Factorial sampling plans for preliminary computational experiments. Technometrics, 33(2), 161–174.
Pianosi, F., Beven, K., Freer, J., Hall, J., Rougier, J., Stephenson, D.B., Wagener, T. (2016). Sensitivity analysis of environmen-

tal models: A systematic review with practical workflow. Environmental Modelling and Software, 79, 214–232.
Plotly (n.d.). Retrieved 2020 from https://plot.ly/.
Prasanna, D.R. (2009). Dependency Injection. Design Patterns Using Spring and Guide. Manning.
Project Reactor (n.d.). Retrieved 2021 from https://projectreactor.io.
Radecki, M., Szymocha, T., Harężlak, D., Pawlik, M., Andrzejewski, J., Ziajka, W., Szelc, M. (2012). Integrating various grid

middleware components and user services into a single platform. In M. Bubak, T. Szepieniec, K. Wiatr (Eds.), Building
a National Distributed e-Infrastructure – PL-Grid (pp. 15–26). Springer Berlin, Heidelberg.

Rauch, Ł., Szeliga, D., Bachniak, D., Bzowski, K., Pietrzyk, M. (2014). Application of sensitivity analysis to grid-based pro-
cedure dedicated to creation of SSRVE. In M. Bubak, J. Kitowski, K. Wiatr (Eds.), eScience on Distributed Computing
Infrastructure. Achievements of PLGrid Plus Domain-Specific Services and Tools (pp. 364–377). Springer Cham.

Razavi, S., Gupta, H.V. (2016). A new framework for comprehensive, robust, and efficient global sensitivity analysis: 1. Theo-
ry. Water Resources Research, 52(1), 423–439.

React (n.d.). React. A JavaScript library for building user interfaces. Retrieved 2021 from https://facebook.github.io/react/.
ReactiveX (n.d.). Retrieved 2021 from http://reactivex.io/documentation/operators.html.
Redux (n.d.). Retrieved 2021 from https://github.com/reactjs/redux.
SALib (n.d.). SALib. Sensitivity Analysis Library in Python (Numpy). Contains Sobol, Morris, and FAST methods. Retrieved

2020 from http://salib.github.io/SALib/.
Saltelli, A., Chan, K., Scott, E.M. (2009). Sensitivity Analysis, Wiley.
Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., Li, S., Wu, Q. (2019). Why so many published sen-

sitivity analyses are false: A systematic review of sensitivity analysis practices. Environmental Modelling and Software,
114, 29–39.

Scalarm (n.d.). Retrieved 2017 from https://github.com/Scalarm/scalarm.
Sheikholeslami, R., Razavi, S., Gupta, H.V., Becker, W., Haghnegahdar, A. (2019). Global sensitivity analysis for high-dimen-

sional problems: How to objectively group factorsand measure robustness and convergence while reducing computational
cost. Environmental Modelling and Software, 111, 282–299.

SimLab (n.d.). SIMLAB and other software. Retrieved 2020 from https://ec.europa.eu/jrc/en/samo/simlab.
Szeliga, D., Kusiak, J., Rauch, Ł. (2012). Sensitivity analysis as support for design of hot rolling technology of dual phase steel

strips. In J. Kusiak, J. Majta, D. Szeliga (Eds.), Metal Forming 2012. Proceedings of the 14th International Conference on
Metal Forming (pp. 1275–1278). Wiley-VCH.

Szeliga, D., Sztangret, Ł., Kusiak, J., Pietrzyk, M. (2013). Optimization as a support for design of hot rolling technology of dual
phase steel strips. In S.-H. Zhang, X.-H. Liu, M. Cheng, J. Li (Eds.), AIP Proceedings of the 11th International Conference
on Numerical Methods in Industrial Forming Processes: NUMIFORM (pp. 183–191).

Xiong, Y., Chen, W.D., Apley, D., Ding, X. (2006). A non-stationary covariance-based Kriging method for metamodelling in en-
gineering design. International Journal for Numerical Methods in Engineering, 71(6), 733–756, https://doi.org/10.1002/
nme.1969.

https://doi.org/10.1016/j.envsoft.2019.104588
https://doi.org/10.1016/j.envsoft.2019.104588
https://code.google.com/p/efficient-java-matrix-library/
http://www.objecthunter.net/exp4j/
http://www.json.org/
http://www.jython.org/
https://github.com/Kodein-Framework/Kodein-DI/
https://kotlinlang.org/docs/reference/coroutines-overview.html
https://github.com/Kotlin/ktor
https://www.mathjax.org
http://doi.org/10.1007/s43452-020-00107-0
https://www.mongodb.com/
https://plot.ly/
https://projectreactor.io
https://facebook.github.io/react/
http://reactivex.io/documentation/operators.html
https://github.com/reactjs/redux
http://salib.github.io/SALib/
https://github.com/Scalarm/scalarm
https://ec.europa.eu/jrc/en/samo/simlab
https://doi.org/10.1002/nme.1969
https://doi.org/10.1002/nme.1969

