Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An IoT-based smart home energy management system (SHEMS) with power quality control (PQC) in Smart Grid using MAORDF-CapSA system is proposed in this paper. The proposed hybrid system is the combined execution of the Mexican axolotl optimization (MAO)-random decision forest (RDF) and the capuchin search algorithm (CapSA) therefore it is known as MAORDF-CapSA system. The main contribution of this paper is divided into two phases namely, smart home energy management system and power quality enhancement (PQE). In the first phase, the main objective of the proposed work is pointed out as it pursues: (1) to propose an energy management system for the distribution system that uses the IoT framework; (2) to deal with the power and resources of the distribution system; (3) promote the advancement of the demand response energy management system; (4) expand the adaptability of networks and optimize the use of accessible resources. The second phase permits to improve the shared use of the grid to maintain the power quality. The proposed CapSA controller detects the event of power quality issue and voltage rise. Additionally, the proposed system is responsible for meeting the general supply and energy demand. The performance of the proposed system is executed on the MATLAB platform and compared with various existing systems.
Wydawca
Rocznik
Tom
Strony
1--19
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, Andhra Pradesh 522502, India
- Department of Electrical and Electronics Engineering, Gokaraju Rangaraju Institute of Engineering and Technology, Bachupally, Survey No. 288, Nizampet Rd, Kukatpally, Hyderabad, Telangana 500090, India
autor
- Department of Electrical and Electronics Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh 522502, India
Bibliografia
- 1. Abdelaziz E.A., Saidur R., Mekhilef S. 2011. A review on energy saving strategies in industrial sector. Renewable and Sustainable Energy Reviews, 15(1), 150–168.
- 2. Ahmad S., Baig Z. 2012. Fuzzy-based optimization for eff ective detection of smart grid cyber-attacks. Int. J. Smart Grid Clean Energy, 1(1), 15–21.
- 3. Albert A., Rajagopal R. 2013. Smart meter driven segmentation: What your consumption says about you. IEEE Transactions on Power Systems, 28(4), 4019–4030.
- 4. Bi Z., Da Xu L., Wang C. 2014. Internet of things for enterprise systems of modern manufacturing. IEEE Transactions on Industrial Informatics, 10(2), 1537–1546.
- 5. Çiçek A., Erenoğlu A.K., Erdinç O., Bozkurt A., Taşcıkaraoğlu A., Catalão J.P. 2021. Implementing a demand side management strategy for harmonics mitigation in a smart home using real measurements of household appliances.International Journal of Electrical Power & Energy Systems, 125, 106528.
- 6. Ding Y.M., Hong S.H., Li X.H. 2014. A demand response energy management scheme for industrial facilities in smart grid. IEEE Transactions on Industrial Informatics, 10(4), 2257–2269.
- 7. Duman A.C., Erden H.S., Gönül Ö., Güler Ö. 2021. A home energy management system with an integrated smart thermostat for demand response in smart grids. Sustainable Cities and Society, 65, 102639.
- 8. Erwinski K., Paprocki M., Grzesiak L.M., Karwowski K., Wawrzak A. 2012. Application of ethernetpowerlink for communication in a linuxrtai open cnc system. IEEE Transactions on Industrial Electronics, 60(2), 628–636.
- 9. Espinoza M., Joye C., Belmans R., De Moor B. 2005. Short-term load forecasting, profile identification, and customer segmentation: a methodology based on periodic time series. IEEE Transactions on Power Systems, 20(3), 1622–1630.
- 10. Ferrari P., Flammini A., Vitturi S. 2006. Performance analysis of PROFINET networks. Computer Standards & Interfaces, 28(4), 369–385.
- 11. Figueiredo V., Rodrigues F., Vale Z., Gouveia J.B. 2005. An electric energy consumer characterization framework based on data mining techniques. IEEE Transactions on power systems, 20(2), 596–602.
- 12. Jansen D., Buttner H. 2004. Real-time Ethernet: the EtherCAT solution. Computing and Control Engineering, 15(1), 16–21.
- 13. Javadi M.S., Nezhad A.E., Nardelli P.H., Gough M., Lotfi M., Santos S., Catalão J.P. 2021. Self-scheduling model for home energy management systems considering the end-users discomfort index within price-based demand response programs.Sustainable Cities and Society, 68, 102792.
- 14. Karthick T., Chandrasekaran K. 2021. Design of IoT based smart compact energy meter for monitoring and controlling the usage of energy and power quality issues with demand side management for a commercial building. Sustainable Energy, Grids and Networks, 26, 100454.
- 15. Kondili E., Pantelides C.C., Sargent R.W. 1993. A general algorithm for short-term scheduling of batch operations – I. MILP formulation. Computers & Chemical Engineering, 17(2), 211–227.
- 16. Marzband M., Ghadimi M., Sumper A., Domínguez-García J.L. 2014. Experimental validation of a real-time energy management system using multiperiod gravitational search algorithm for microgrids in islanded mode. Applied Energy, 128, 164–174.
- 17. Marzband M., Sumper A., Domínguez-García J.L., Gumara-Ferret R. 2013. Experimental validation of a real time energy management system for microgrids in islanded mode using a local day-ahead electricity market and MINLP. Energy Conversion and Management, 76, 314–322.
- 18. Moro J.Z., Duarte L.F., Ferreira E.C., Dias J.A. 2013. A home appliance recognition system using the approach of measuring power consumption and power factor on the electrical panel, based on energy meter ICs. Circuits and Systems, 4(3), 245–251.
- 19. Neves D., Pina A., Silva C.A. 2015. Demand response modeling: A comparison between tools. Applied Energy, 146, 288–297.
- 20. Rao H., Shi X., Rodrigue A.K., Feng J., Xia Y., Elhoseny M., Yuan X., Gu L. 2019. Feature selection based on artificial bee colony and gradient boosting decision tree. Applied Soft Computing, 74, 634–642.
- 21. Rao H., Shi X., Rodrigue A.K., Feng J., Xia Y., Elhoseny M., Yuan X., Gu L. 2019. Feature selection based on artificial bee colony and gradient boosting decision tree. Applied Soft Computing, 74, 634–642.
- 22. Rehman A.U., Wadud Z., Elavarasan R.M., Hafeez G., Khan I., Shafiq Z., Alhelou H.H. 2021. An optimal power usage scheduling in smart grid integrated with renewable energy sources for energy management. IEEE Access, 9, 84619–84638.
- 23. Rodrigues Junior W.L., Borges F.A., Rabelo R.D., Rodrigues J.J., Fernandes R.A., da Silva I.N. 2021. A methodology for detection and classification of power quality disturbances using a real‐time operating system in the context of home energy management systems. International Journal of Energy Research, 45(1), 203–219.
- 24. Siano P. 2014. Demand response and smart grids—A survey. Renewable and Sustainable Energy Reviews, 30, 461–478.
- 25. Suja K.R. 2021. Mitigation of power quality issues in smart grid using levy flight based moth flame optimization algorithm. Journal of Ambient Intelligence and Humanized Computing, 12(10), 9209–9228.
- 26. Tao F., Cheng Y., Da Xu L., Zhang L., Li B.H. 2014. CCIoT-CMfg: cloud computing and internet of things-based cloud manufacturing service system. IEEE Transactions on Industrial Informatics, 10(2), 1435–1442.
- 27. Tao F., Zuo Y., Da Xu L., Lv L., Zhang L. 2014. Internet of things and BOM-based life cycle assessment of energy-saving and emission-reduction of products. IEEE Transactions on Industrial Informatics, 10(2), 1252–1261.
- 28. Trianni A., Cagno E., Farné S. 2016. Barriers, drivers and decision-making process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises. Applied Energy, 162, 1537–1551.
- 29. Villuendas-Rey Y., Velázquez-Rodríguez J.L., Alanis-Tamez M.D., Moreno-Ibarra M.A., Yáñez-Márquez C. 2021. Mexican axolotl optimization: a novel bioinspired heuristic. Mathematics, 9(7), 781.
- 30. Wang X., Mao X., Khodaei H. 2021. A multi-objective home energy management system based on internet of things and optimization algorithms. Journal of Building Engineering, 33, 101603.
- 31. Wu C.M., Chang R.S., Chan H.Y. 2014. A green energy-efficient scheduling algorithm using the DVFS technique for cloud datacenters. Future Generation Computer Systems, 37, 141–147.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16773c9e-e170-4b5c-a9cf-242d6fe17d16