Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
While organic fertilizers enhance tobacco quality and economic value, their low maturity levels often limit their effectiveness when applied within the same growing season, discouraging farmer adoption. Conventional composting methods typically require over 90 days to achieve full maturity. This study aimed to optimize composting methods and material formulations for large-scale factory production to shorten the fermentation period, enabling same-season application and benefits. Two large-scale experiments (each exceeding 100 tons) compared molecular membrane forced aeration combined with static and windrow composting against traditional windrow composting. Different material ratios of cow dung, mushroom residue, and distillery waste were also evaluated. Results showed that the optimized method, utilizing molecular membrane technology and adjusted material ratios, reduced the composting time from over 90 days to 60 days. The optimal formula consisted of cow dung, mushroom residue, and distillery waste at a 4:3:3 dry weight ratio with a moisture content ≤ 63%. After 60 days, this optimized process yielded organic fertilizer meeting all quality standards, including humic acid content, nutrient levels, and absence of harmful organisms. This accelerated composting method facilitates same-season fertilizer application, benefiting farmers and enhancing the efficiency and cost-effectiveness of organic fertilizer production.
Czasopismo
Rocznik
Tom
Strony
221--235
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
- China National Tobacco Corporation Guizhou Provincial Company, Guiyang 550004, Guizhou, China
autor
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
autor
- Zunyi Branch, Guizhou Provincial Tobacco Company, Zunyi 563000, Guizhou, China
autor
- Guizhou Academy of Tobacco Science, Guiyang 550081, Guizhou, China
autor
- Guangxi Zhuang Autonomous Region Tobacco Company of CNTC, Nanning 530022, China
autor
- Tobacco and Health Research Center, University of Science and Technology of China, Hefei 230035, China
autor
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
autor
- China National Tobacco Corporation Guizhou Provincial Company, Guiyang 550004, Guizhou, China
Bibliografia
- 1. Tong, Z.; Xu, M.; Zhang, Q.; Lin, F.; Fang, D.; Chen, X.; Zhu, T.; Liu, Y.; Xu, H.; Xiao, B. 2023. Construction of a high-density genetic map and dissection of genetic architecture of six agronomic traits in tobacco (Nicotiana tabacum L.). Front Plant Sci 14, 1126529.
- 2. Wang, M.; Zhang, L.; He, Y.; Huang, L.; Liu, L.; Chen, D.; Shan, A.; Feng, Y.; Yang, X. 2022. Soil fungal communities affect the chemical quality of flue-cured tobacco leaves in Bijie, Southwest China. Sci Rep 12(1), 2815.
- 3. Jiang, Y.; Zhang, R.; Zhang, C.; Su, J.; Cong, W.F.; Deng, X. 2022. Long-term organic fertilizer additions elevate soil extracellular enzyme activities and tobacco quality in a tobacco-maize rotation. Front Plant Sci 13, 973639.
- 4. Chang, X.; Wang, Y.; Sun, J.; Xiang, H.; Yang, Y.; Chen, S.; Yu, J.; Yang, C. 2022. Mitigation of tobacco bacteria wilt with microbial degradation of phenolic allelochemicals. Sci Rep 12(1), 20716.
- 5. Zhai, X.; Zhang, L.; Wu, R.; Wang, M.; Liu, Y.; Lian, J.; Munir, M. A. M.; Chen, D.; Liu, L.; Yang, X. 2022. Molecular composition of soil organic matter (SOM) regulate qualities of tobacco leaves. SciRep 12(1), 15317.
- 6. Yu, X.; Zhang, Y.; Shen, M.; Dong, S.; Zhang, F.; Gao, Q.; He, P.; Shen, G.; Yang, J.; Wang, Z.; Bo, G. 2023. Soil Conditioner Affects Tobacco Rhizosphere Soil Microecology. Microb Ecol 86(1), 460–473.
- 7. Feng, J.; Chen, L.; Xia, T.; Ruan, Y.; Sun, X.; Wu, T.; Zhong, Y.; Shao, X.; Tang, Z. 2023. Microbial fertilizer regulates C:N:P stoichiometry and alleviates phosphorus limitation in flue-cured tobacco planting soil. Sci Rep 13(1), 10276.
- 8. Lu, Y.; Cong, P.; Kuang, S.; Tang, L.; Li, Y.; Dong, J.; Song, W. 2022. Long-term excessive application of K(2)SO(4) fertilizer alters bacterial community and functional pathway of tobacco-planting soil. Front Plant Sci 13, 1005303.
- 9. Zhou, H.; Zhang, M.; Yang, J.; Wang, J.; Chen, Y.; Ye, X. 2023. Returning ryegrass to continuous cropping soil improves soil nutrients and soil microbiome, producing good-quality flue-cured tobacco. Front Microbiol 14, 1257924.
- 10. Chen, D.; Wang, M.; Wang, G.; Zhou, Y.; Yang, X.; Li, J.; Zhang, C.; Dai, K. 2022. Functional organic fertilizers can alleviate tobacco (Nicotiana tabacum L.) continuous cropping obstacle via ameliorating soil physicochemical properties and bacterial community structure. Front Bioeng Biotechnol 10, 1023693.
- 11. Ren, X.; Zhang, N.; Cao, M.; Wu, K.; Shen, Q.; Huang, Q. 2012. Biological control of tobacco black shank and colonization of tobacco roots by a Paenibacillus polymyxa strain C5. Biology and Fertility of Soils 48(6), 613–620.
- 12. Zhang, Y.W.; Xu, Z.; Tang, L.; Li, Y.H.; Song, J.Q.; Xu, J.Q. 2013. Effects of different organic fertilizers on the microbes in rhizospheric soil of flue-cured tobacco. Ying Yong Sheng Tai Xue Bao 24(9), 2551–6.
- 13. Yang, X.; Zhang, K.; Qi, Z.; Shaghaleh, H.; Gao, C.; Chang, T.; Zhang, J.; Hamoud, Y.A. 2024. Field examinations on the application of novel biocharbased microbial fertilizer on degraded soils and growth response of flue-cured tobacco (Nicotiana tabacum L.). Plants (Basel) 13(10), 1328.
- 14. Iqbal, A.; He, L.; Ali, I.; Ullah, S.; Khan, A.; Akhtar, K.; Wei, S.; Fahad, S.; Khan, R.; Jiang, L. 2021. Co-incorporation of manure and inorganic fertilizer improves leaf physiological traits, rice production and soil functionality in a paddy field. Sci Rep 11(1), 10048.
- 15. He, X.; Gou, Z.; Liu, D.; Yang, S.; Zhao, Q.; Yang, S.; Wu, G.; Xiong, M. 2020. Effects of basal/topdressing ratio and application time of organic fertilizer on yield and quality of upper tobacco leaf and root growth. Journal of Henan Agricultural Sciences 49(2), 58.
- 16. Yu-Hong, Y.; Dong-Mei, C.; Yan, J.; Hai-Bin, W.; Yu-Qi, D.; Xu-Kui, G.; Hai-Bin, H.; Wen-Xiong, L. 2011. Effect of different fertilizers on functional diversity of microbial flora in rhizospheric soil under tobacco monoculture. Acta Agronomica Sinica 37(1), 105–111.
- 17. Jiang, Y.; Zhang, J.; Manuel, D.-B.; De Beeck, M.O.; Shahbaz, M.; Chen, Y.; Deng, X.; Xu, Z.; Li, J.; Liu, Z. 2022. Rotation cropping and organic fertilizer jointly promote soil health and crop production. Journal of Environmental Management 315, 115190.
- 18. Mengqi, Z.; Shi, A.; Ajmal, M.; Ye, L.; Awais, M. 2021. Comprehensive review on agricultural waste utilization and high-temperature fermentation and composting. Biomass Conversion and Biorefinery 1–24.
- 19. Bayazitova, Z.E.; Kurmanbayeva, A.S.; Tleuova, Z.O.; Temirbekova, N.G. 2023. Application of the thermophilic fermentation method to obtain environmentally friendly organic fertilizer. Journal of Ecological Engineering 24(4), 202–216.
- 20. Jiang, Y.; Ju, M.; Li, W.; Ren, Q.; Liu, L.; Chen, Y.; Yang, Q.; Hou, Q.; Liu, Y. 2015. Rapid production of organic fertilizer by dynamic high-temperature aerobic fermentation (DHAF) of food waste. Bioresource technology 197, 7–14.
- 21. Adamu, H.; Bello, U.; Yuguda, A.U.; Tafida, U.I.; Jalam, A.M.; Sabo, A.; Qamar, M. 2023. Production processes, techno-economic and policy challenges of bioenergy production from fruit and vegetable wastes. Renewable and Sustainable Energy Reviews 186, 113686.
- 22. Chen, Y.; Ren, K.; Su, J.; He, X.; Zhao, G.; Hu, B.; Chen, Y.; Xu, Z.; Jin, Y.; Zou, C. 2020. Rotation and organic fertilizers stabilize soil water-stable aggregates and their associated carbon and nitrogen in flue-cured tobacco production. Journal of soil science and plant nutrition 20, 192–205.
- 23. Chew, K.W.; Chia, S.R.; Yap, Y.J.; Ling, T.C.; Tao, Y.; Show, P.L. 2018. Densification of food waste compost: Effects of moisture content and dairy powder waste additives on pellet quality. Process Safety and Environmental Protection 116, 780–786.
- 24. Bremner, J. 1960. Determination of nitrogen in soil by the Kjeldahl method. The Journal of Agricultural Science 55(1), 11–33.
- 25. Viets, J.; Clark, J.; Campbell, W. 1984. A rapid, partial leach and organic separation for the sensitive determination of Ag, Bi, Cd, Cu, Mo, Pb, Sb, and Zn in surface geologic materials by flame atomic absorption. Journal of Geochemical Exploration 20(3), 355–366.
- 26. Osborn, G.; Johns, H. 1951. The rapid determination of sodium and potassium in rocks and minerals by flame photometry. Analyst 76(904), 410–415.
- 27. Luo, H.; Lyu, T.; Muhmood, A.; Xue, Y.; Wu, H.; Meers, E.; Dong, R.; Wu, S. 2018. Effect of flocculation pre-treatment on membrane nutrient recovery of digested chicken slurry: Mitigating suspended solids and retaining nutrients. Chemical Engineering Journal 352, 855–862.
- 28. Jaffrain, J.; Gérard, F.; Meyer, M.; Ranger, J. 2007. Assessing the quality of dissolved organic matter in forest soils using ultraviolet absorption spectrophotometry. Soil Science Society of America Journal 71(6), 1851–1858.
- 29. Chen, T.; Xie, Y.; Wei, Q.; Wang, X. A.; Hagman, O.; Karlsson, O.; Liu, J.; Lin, M. 2016. Improving the mechanical properties of ultra-low density plant fiber composite (ULD_PFC) by refining treatment. BioResources 11(4), 8558–8569.
- 30. DeForest, J.L.; Moorhead, D.L. 2020. Effects of elevated pH and phosphorus fertilizer on soil C, N and P enzyme stoichiometry in an acidic mixed mesophytic deciduous forest. Soil Biology and Biochemistry 150, 107996.
- 31. Steinbaum, L.; Kwong, L.H.; Ercumen, A.; Negash, M.S.; Lovely, A.J.; Njenga, S.M.; Boehm, A.B.; Pickering, A.J.; Nelson, K.L. 2017. Detecting and enumerating soil-transmitted helminth eggs in soil: New method development and results from field testing in Kenya and Bangladesh. PLoS neglected tropical diseases 11(4), e0005522.
- 32. Singh, B.; Ryan, J. 2015. Managing fertilizers to enhance soil health. International Fertilizer Industry Association, Paris, France 1, 1–24.
- 33. Khan, M.; Mobin, M.; Abbas, Z.; Alamri, S. 2018. Fertilizers and their contaminants in soils, surface and groundwater. Encyclopedia of the Anthropocene 5, 225–240.
- 34. Koul, B.; Yakoob, M.; Shah, M.P. 2022. Agricultural waste management strategies for environmental sustainability. Environmental Research 206, 112285.
- 35. Chew, K.W.; Chia, S.R.; Yen, H.-W.; Nomanbhay, S.; Ho, Y.-C.; Show, P.L. 2019. Transformation of biomass waste into sustainable organic fertilizers. Sustainability 11(8), 2266.
- 36. Wang, M.; Duan, S.; Zhou, Z.; Chen, S. 2019. Alleviation of cadmium toxicity to tobacco (Nicotiana tabacum) by biofertilizers involves the changes of soil aggregates and bacterial communities. Ecotoxicology and Environmental Safety 169, 240–247.
- 37. Zou, C.; Li, Y.; Huang, W.; Zhao, G.; Pu, G.; Su, J.; Coyne, M. S.; Chen, Y.; Wang, L.; Hu, X. 2018. Rotation and manure amendment increase soil macro-aggregates and associated carbon and nitrogen stocks in flue-cured tobacco production. Geoderma 325, 49–58.
- 38. Tabaxi, I.; Zisi, C.; Karydogianni, S.; Folina, A.-E.; Kakabouki, I.; Kalivas, A.; Bilalis, D. 2021. Effect of organic fertilization on quality and yield of oriental tobacco (Nicotiana tabacum L.) under Mediterranean conditions 1.
- 39. Zhang, Y.; Yuan, S.; Wang, J.; Cheng, J.; Zhu, D. 2022. How do the different types of land costs affect agricultural crop-planting selections in China? Land 11(11), 1890.
- 40. Wang, L.K.; Wang, M.-H.S.; Cardenas, R.R.; Sabiani, N.H.M.; Yusoff, M.S.; Hassan, S.H.; Kamaruddin, M.A.; George, F.O.; Hung, Y.-T. 2021. Composting processes for disposal of municipal and agricultural solid wastes. Solid Waste Engineering and Management: 1, 399–523.
- 41. Al-Alawi, M.; Szegi, T.; El Fels, L.; Hafidi, M.; Simon, B.; Gulyas, M. 2019. Green waste composting under GORE (R) cover membrane at industrial scale: physico-chemical properties and spectroscopic assessment. International Journal of Recycling of Organic Waste in Agriculture 8, 385–397.
- 42. Siles-Castellano, A.B.; López, M.J.; López-González, J.A.; Suárez-Estrella, F.; Jurado, M.M.; Estrella-González, M.J.; Moreno, J. 2020. Comparative analysis of phytotoxicity and compost quality in industrial composting facilities processing different organic wastes. Journal of Cleaner Production 252, 119820.
- 43. Raza, S.T.; Feyissa, A.; Li, R.; Rene, E.R.; Ali, Z.; Iqbal, H.; Sahito, Z.A.; Chen, Z. 2024. Emerging technology effects on combined agricultural and eco-vermicompost. Journal of Environmental Management 352, 120056.
- 44. Yao, Z.; Wei, Y.; Liu, C.; Zheng, X.; Xie, B. 2015. Organically fertilized tea plantation stimulates N 2 O emissions and lowers NO fluxes in subtropical China. Biogeosciences 12(20), 5915–5928.
- 45. Chandra, K. 2005. Organic manures. Regional Centre of Organic Farming 34, 6–46.
- 46. Aguilar-Paredes, A.; Valdés, G.; Araneda, N.; Valdebenito, E.; Hansen, F.; Nuti, M. 2023. Microbial community in the composting process and its positive impact on the soil biota in sustainable agriculture. Agronomy 13(2), 542.
- 47. Hemansi; Chakraborty, S.; Yadav, G.; Saini, J.K.; Kuhad, R.C. 2019. Chapter 7 - Comparative Study of Cellulase Production Using Submerged and Solid-State Fermentation. In New and Future Developments in Microbial Biotechnology and Bioengineering, Srivastava, N.; Srivastava, M.; Mishra, P.K.; Ramteke, P.W.; Singh, R.L., Eds. Elsevier: 99–113.
- 48. Moraru, P.I.; Rusu, T. 2021. Composting and Quality Improvement Processes for Active Protection of the Environment. In Nitrogen in Agricultural Landscape, CRC Press: 115–149.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16773c4d-53e5-4e40-bd8d-e4235896467a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.