Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Mechanical properties and residual stresses of friction stir welded and autogenous tungsten inert gas welded structural steel butt welds have been studied. Friction stir welding (FSW) of structural steel butt joints has been carried out by in-house prepared tungsten carbide tool with 20 mm/min welding speed and 931 rpm tool rotation. Tungsten inert gas (TIG) welding of the butt joints was carried out with welding current, arc voltage and the welding speed of 140 amp, 12 V and 90 mm/min respectively. Residual stress measurement in the butt welds has been carried out in weld fusion zone and heat affected zone (HAZ) by using blind hole drilling method. The magnitude of longitudinal residual stress along the weld line of TIG welded joints were observed to be higher than friction stir welded joint. In both TIG and FSW joints, the nature of longitudinal stress in the base metal was observed to be compressive whereas in HAZ was observed to be tensile. It can be stated that butt welds produced with FSW process had residual stress much lower than the autogenous TIG welds.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1019--1029
Opis fizyczny
Bibliogr. 18 poz., fot., rys., tab., wykr., wzory
Twórcy
autor
- Indian Institute of Technology Roorkee, Department of Mechanical and Industrial Engineering Uttrakhand-247667, India
autor
- Indian Institute of Technology Roorkee, Department of Mechanical and Industrial Engineering Uttrakhand-247667, India
autor
- Indian Institute of Technology Roorkee, Department of Mechanical and Industrial Engineering Uttrakhand-247667, India
autor
- Indian Institute of Technology Roorkee, Department of Mechanical and Industrial Engineering Uttrakhand-247667, India
autor
- Indian Institute of Technology Roorkee, Department of Mechanical and Industrial Engineering Uttrakhand-247667, India
Bibliografia
- [1] W. Zinn, B. Scholtes, Handbook of residual stress and deformation of steel, 391(2013).
- [2] N. S. Rossini, M. Dassisti, K. Y. Benyounis , A. G. Olabi, Materials&Design 35, 572 (2012).
- [3] A. Giri, C. Pandey, M. M. Mahapatra, K. Sharma, P. K. Singh, Measurement 65, 41 (2015).
- [4] Vishay Precision Group, Tech Note TN 503, 19-33 (2010).
- [5] C. M. Chen, R. Kovacevic, Machine Tools&Manufacture 43, 1319 (2003).
- [6] Z. M. Hu, P. Blackwell, J. W. Brooks, Residual stress in friction stir welding, in ABAQUS Users’ conference, 2004, UK.
- [7] L. Fratini, S. Pasta, Journal of Materials: Design and Applications 224, 149 (2010).
- [8] M. T. Milan, J. R. Tarpani, W. W. Bose Filho, Residual stress evaluation of AA2024-T3 friction stir welded joints, in 18th International Congress of Mechanical Engineering, 2005, p. 6-11, 2005, Ouro Preto, Minar Gerais.
- [9] G. Sharma, D. K. Dwivedi, T. Indian I. Metals, 2016, DOI 10.1007/s12666-016-0876-x.
- [10] T. J. Lienert, W. L. Stellwag, B. B. Grimmett, R. W. Warke, Welding Journal 1, (2003).
- [11] Z. Boumerzoug, C. Derfouf, T. Baudin, Engineering 2, 502 (2010).
- [12] J. Pasupathy, IJERT 2 (11), 1558 (2013).
- [13] R. D. Peelamedu, R. Roy, D. K. Agrawal, Mater. Lett. 55, 234 (2002).
- [14] C. Pandey, A. Giri, M. M. Mahapatra, Mater. Sci. Eng. A 664, 58 (2016).
- [15] C. Pandey, A. Giri, M. M. Mahapatra, P. Kumar, Met. Mater. Int. 23 (1), 148 (2017).
- [16] L. Qian, P. Guo, F. Zhang, J. Meng, M. Zhang, Mater. Sci. Eng. A 561, 266 (2013).
- [17] R. C. Picu, G. Vincze, J. J. Gracio, F. Barlat, Scr. Mater. 54, 71 (2006).
- [18] F. Ozturk, H. Pekel, H. S. Halkaci, J. Mater. Eng. Perform. 20, 77 (2011).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16737501-4eae-48a6-8f2a-f8c6cee7662b