Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The physical and mechanical properties of natural stones are crucial factors in determining their quality, predicting their durability, and assessing their potential uses. In this study, a novel method is introduced to assess the quality of dimension stone using the Fuzzy logic inference system (FIS). The FIS analysis results are described as dimension stone field performance coefficient (DSFPC), which indicates the quality of dimension stones. The analysis results are also compared with different approaches, and it is concluded that the proposed FIS model can reliably be used to quantify the quality of dimension stones. The present study, in this manner, contributes to the natural stone industry by proposing a comprehensive predictive model used to quantify the dimension stone quality based on critical physicomechanical rock properties.
Czasopismo
Rocznik
Tom
Strony
119--143
Opis fizyczny
Bibliogr. 55 poz., rys., tab.
Twórcy
autor
- Nanotechnology Engineering Department, Engineering Faculty, Abdullah Gul University, 38100 Kayseri, Turkey
autor
- Department of Mining, Faculty of Geoengineering, Mining and Geology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- ANDRIANI G.F., GERMINARIO L., 2014, Thermal decay of carbonate dimension stones: fabric, physical and mechanical changes, Environmental Earth Sciences, Vol. 72, No. 7, 2523–2539. https://doi.org/10.1007/s12665-014-3160-6
- AKKOYUN O., FUAT TOPRAK Z., 2012, Fuzzy-based quality classification model for natural building stone blocks, Engineering Geology, Vol. 133–134, 66–75, https://doi.org/10.1016/j.enggeo.2012.02.016
- AS 3700, 2018. Masonry structures, fifth edition, Standards Australia.
- ASTM C503/C503M, 2022. Standard specification for marble dimension stone, ASTM International.
- ASTM C568/C568M, 2015. Standard Specification for Limestone Dimension Stone, ASTM International.
- ASTM C615/C615M-18E1, 2018. Standard Specification for Granite Dimension Stone, ASTM International.
- AYDIN A., 2004, Fuzzy set approaches to classification of rock masses, Engineering Geology, Vol. 74, No. 3–4, 227–245, https://doi.org/10.1016/j.enggeo.2004.03.011
- BENAVENTE D., DEL CURA M.G., FORT R., ORDÓÑEZ S., 2004, Durability estimation of porous building stones from pore structure and strength, Engineering Geology, Vol. 74, No. 1–2, 113–127, https://doi.org/10.1016/j.enggeo.2004.03.005
- BS EN 12407, 2000. Natural stone test methods – petrographic examination, British Standards Institution.
- Federal Highway Administration (FHA), rock and mineral identification for engineers, U.S. Department of Transportation, USA, 1991.
- FIGUEIREDO C., FOLHA R., MAURÍCIO A., ALVES C., AIRES-BARROS L., 2010, Contribution to the technological characterization of two widely used Portuguese dimension stones: the ‘Semi-rijo’ and ‘Moca creme’ stones, Geological Society, London, Special publications, Vol. 333, No. 1, 153–163.
- FITZNER B., 2004, Documentation and evaluation of stone damage on monuments. In: Proceedings of the 10th International Congress on Deterioration and Conservation of Stone, Vol. 27, 677–690.
- FRASCÁ M.H.B.O., YAMAMOTO J.K., 2006, Ageing tests for dimension stone-experimental studies of granitic rocks from Brazil. In: Proceedings 10th IAEG International Congress. The Geological Society of London, IAEG2006 paper, No. 224.
- GERMINARIO L., SIEGESMUND S., MARITAN L., MAZZOLI C., 2017, Petrophysical and mechanical properties of Euganean trachyte and implications for dimension stone decay and durability performance, Environmental Earth Sciences, Vol. 76, 739, https://doi.org/10.1007/s12665-017-7034-6
- GORSEVSKI P.V., JANKOWSKI P., GESSLER P.E., 2006, An heuristic approach for mapping landslide hazard by integrating fuzzy logic with analytic hierarchy process, Control and Cybernetics, Vol. 35, No. 1, 121–146.
- HAILESLASSIE F., LETA A., DESALEGN G., KALAYU M., 2019, Classification of marble using image processing, Int. J. Data Sci. Tech., Vol. 5, No. 3, 57–65. https://doi.org/10.11648/j.ijdst.20190503.11
- HAMZA M.F., YAP H.J., CHOUDHURY I.A., 2017, Recent advances on the use of meta-heuristic optimization algorithms to optimize the type-2 fuzzy logic systems in intelligent control, Neural Computing and Applications, Vol. 28, 979–999, https://doi.org/10.1007/s00521-015-2111-9
- HAZRATHOSSEINI A., MAHDEVARI S., 2018, Applicability quality assessment of dimension stones for service in the buildings: A new approach using a mathematical model and fuzzy logic, Journal of Building Engineering, Vol. 20, 585–594, https://doi.org/10.1016/j.jobe.2018.09.002
- HAZRATHOSSEINI A., MAHDEVARI S., 2019, Geometric quality assessment of in situ blocks in dimension stone quarries, Bulletin of Engineering Geology and the Environment, Vol. 78, 2377–2385, https://doi.org/10.1007/s10064-018-1316-4
- HOSSEINI S.M., ATAEI M., KHALOKAKAEI R., MIKAEIL R., HAGHSHENAS S.S., 2020, Study of the effect of the cooling and lubricant fluid on the cutting performance of dimension stone through artificial intelligence models, Engineering Science and Technology, an International Journal, Vol. 23, No. 1, 71–81, https://doi.org/10.1016/j.jestch.2019.04.012
- ISRM, The complete ISRM suggested methods for rock characterization, testing, and monitoring: 1974–2006. In: R. Ulusay, J.A. Hudson (Eds.), Suggested methods prepared by the commission on testing methods, Int. Soc. Rock Mech. (ISRM), 2007.
- KÖKEN E., BAŞPINAR TUNCAY E., 2022, A probability-based evaluation on andesites for their use as cladding stone, Journal of Mining and Environment, Vol. 13, No. 1, 1–13. https://doi.org/10.22044/jme.2022.11447.2130
- LARREA M.L., CASTRO S.M., BJERG E.A., 2014, A software solution for point counting. Petrographic thin section analysis as a case study, Arabian Journal of Geosciences, Vol. 7, 2981–2989. https:// doi.org/10.1007/s12517-013-1032-0
- LUODES H., SELONEN O., PÄÄKKÖNEN K., 2000, Evaluation of dimension stone in gneissic rocks – a case history from southern Finland, Engineering Geology, Vol. 58, No. 2, 209–223. https://doi.org/10.1016/s0013-7952(00)00059-4
- MARTÍNEZ-MARTÍNEZ J., BENAVENTE D., GOMEZ-HERAS M., MARCO-CASTAÑO L., GARCÍA- -DEL-CURA M.Á., 2013, Non-linear decay of building stones during freeze–thaw weathering processes, Construction and Building Materials, Vol. 38, 443–454. https://doi.org/10.1016/j.conbuildmat.2012.07.059
- MAURÍCIO A., FIGUEIREDO C., ALVES C., PEREIRA M.F., AIRES-BARROS L., NETO J.A.N., 2010, Microtomography-based pore structure modelling of geologic materials used as building and dimension stones, Materials Science Forum, Vol. 636, 1306–1312, https://doi.org/10.4028/ www.scientific.net/msf.636-637.1306
- MIKAEIL R., BAKHTAVAR E., HOSSEINI S., JAFARPOUR A., 2022, Fuzzy classification of rock engineering indices using rock texture characteristics, Bull. Eng. Geol. Environ, Vol. 81, 312, https://doi.org/10.1007/s10064-022-02807-8
- MUSTAFA S., KHAN M.A., KHAN M.R., HAMEED F., MUGHAL M.S., ASGHAR A., NIAZ A., 2015, Geotechnical study of marble, schist, and granite as dimension stone: a case study from parts of lesser Himalaya, Neelam valley area, Azad Kashmir, Pakistan, Bulletin of Engineering Geology and the Environment, Vol. 74, No. 4, 1475–1487, https://doi.org/10.1007/s10064-015-0719-8
- NARA Y., MORIMOTO K., YONEDA T., HIROYOSHI N., KANEKO K., 2011, Effects of humidity and temperature on subcritical crack growth in sandstone, International Journal of Solids and Structures, Vol. 48, No. 7–8, 1130–1140, https://doi.org/10.1016/j.ijsolstr.2010.12.019
- OPARIN V.N., TANAINO A.S., 2015, A new method to test rock abrasiveness based on physicomechanical and structural properties of rocks, Journal of Rock Mechanics and Geotechnical Engineering, Vol. 7, No. 3, 250–255, https://doi.org/10.1016/j.jrmge.2014.12.004
- PEREIRA M.L., DIONÍSIO A., GARCIA M.B., BENTO L., AMARAL P., RAMOS M., 2023, Natural stone heterogeneities and discontinuities: an overview and proposal of a classification system, Bull. Eng. Geol. Environ., Vol. 82, 152,https://doi.org/10.1007/s10064-023-03152-0
- PŘIKRYL R., 2013, Durability assessment of natural stone, Quarterly Journal of Engineering Geology and Hydrogeology, Vol. 46, No. 4, 377–390, https://doi.org/10.1144/qjegh2012-052
- RANA A., KALLA P., VERMA H.K., MOHNOT J.K., 2016, Recycling of dimensional stone waste in concrete: a review, Journal of Cleaner Production, Vol. 135, 312–331, https://doi.org/10.1016/ j.jclepro.2016.06.126
- RIBEIRO R.P., PARAGUASSÚ A.B., RODRIGUES J.E., 2007, Sawing of blocks of siliceous dimension stone: influence of texture and mineralogy, Bulletin of Engineering Geology and the Environment, Vol. 66, No. 1, 101–107, https://doi.org/10.1007/s10064-006-0049-y
- SALVINI S., COLETTI C., MARITAN L., MASSIRONI M., PIEROPAN A., SPIESS R., MAZZOLI C., 2023, Petrographic characterization and durability of carbonate stones used in Unesco world heritage sites in northeastern Italy, Environmental Earth Sciences, Vol. 82, No. 1, 1–24. https://doi.org/10.1007/s12665-022-10732-y
- SCRIVANO S., GAGGERO L., AGUILAR J.G., 2018, Micro-porosity and minero-petrographic features influences on decay: experimental data from four dimension stones, Construction and Building Materials, Vol. 173, 342–349, https://doi.org/10.1016/j.conbuildmat.2018.04.041
- SELONEN O., LUODES H., EHLERS C., 2000, Exploration for dimensional stone – implications and examples from the precambrian of southern Finland, Engineering Geology, Vol. 56, No. 3–4, 275–291, https://doi.org/10.1016/s0013-7952(99)00091-5
- SILVA Z.S.G., SIMÃO J.A.R., 2009, The role of salt fog on alteration of dimension stone, Construction and Building Materials, Vol. 23, No. 11, 3321–3327. https://doi.org/10.1016/j.conbuildmat.2009.06.044
- SOUSA L.M., 2014, Petrophysical properties and durability of granites employed as building stone: a comprehensive evaluation, Bulletin of Engineering Geology and the Environment, Vol. 73, No. 2, 569–588, https://doi.org/10.1007/s10064-013-0553-9
- STRZAŁKOWSKI P., 2021, Characteristics of waste generated in dimension stone processing, Energies, Vol. 14, 7232, https://doi.org/10.3390/en14217232
- STRZAŁKOWSKI P., KÖKEN E., SOUSA L., 2023, Guidelines for natural stone products in connection with European standards, Materials, Vol. 16, 6885, https://doi.org/10.3390/ma16216885
- TS 10835, 1993. Andesite Used ss Facing and Building Stone, Turkish Standards Institution.
- TS 11137, 1993. Limestone Used for Building and Facing, Turkish Standards Institution.
- TABOADA J., ORDÓÑEZ C., SAAVEDRA A., FIESTRAS-JANEIRO G., 2006, Fuzzy expert system for economic zonation of an ornamental slate deposit, Engineering Geology, Vol. 84, No. 3–4, 220–228, https://doi.org/10.1016/j.enggeo.2006.02.002
- TABOADA J., RIVAS T., SAAVEDRA A., ORDÓÑEZ C., BASTANTE F., GIRÁLDEZ E., 2008, Evaluation of the reserve of a granite deposit by fuzzy kriging, Engineering Geology, Vol. 99, No. 1–2, 23–30, https://doi.org/10.1016/j.enggeo.2008.02.001
- TANG C.A., KOU S.Q., 1998, Crack propagation and coalescence in brittle materials under compression, Engineering Fracture Mechanics, Vol. 61, No. 3–4, 311–324, https://doi.org/10.1016/s0013-7944(98)00067-8
- TAO K., ZHENG W., 2020, An anthropomorphic fuzzy model for the time-spatial assessment of sand-stone seepage damage, Automation in Construction, Vol. 109, 102989, https://doi.org/10.1016/ j.autcon.2019.102989
- TS EN 13161, 2014. Natural stone test methods: determination of flexural strength under constant moment, Turkish Standards Institution.
- TS EN 14157, 2017. Natural stone test methods: determination of the abrasion resistance, Turkish Standards Institution.
- TS EN 1926, 2013. Natural stone test methods: determination of uniaxial compressive strength, Turkish Standards Institution.
- TS EN 1936, 2010. Natural Stone Test Methods: Determination of Real Density and Apparent Density and of Total and Open Porosity, Turkish Standards Institution2010.
- TURKINGTON A.V., 1996, Stone durability. In: B.J. Smith, P.A. Warke (Eds.), Processes of urban stone decay, Donhead, London.
- WANG H., DYSKIN A., PASTERNAK E., DIGHT P., 2022, Possible mechanism of spallation in rock samples under uniaxial compression, Engineering Fracture Mechanics, Vol. 269, 108577, https://doi.org/ 10.1016/j.engfracmech.2022.108577
- YARAHMADI R., BAGHERPOUR R., TAHERIAN S.G., SOUSA L.M.O., 2019, A new quality factor for the building stone industry: a case study of stone blocks, slabs, and tiles, Bull. Eng. Geol. Environ., Vol. 78, 533–542, https://doi.org/10.1007/s10064-017-1040-5
- YUN Y., GEN M., 2003, Performance analysis of adaptive genetic algorithms with fuzzy logic and heuristics, Fuzzy Optimization and Decision Making, Vol. 2, 161–175. https://doi.org/10.1023/a:1023499201829
- ZADEH L.A., 1965, Fuzzy sets, Information and Control, Vol. 8 (3), 338–353, https://doi.org/10.1016/s0019-9958(65)90241-x
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-166f0546-f642-449d-bd12-a57bcb61e97a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.