PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance evaluation of precise point positioning using dual frequency multi-GNSS observations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In addition to GPS and GLONASS constellation, the number of (Global Navigation Satellite System) GNSS satellites are increasing, it is now possible to evaluate and analyze the position accuracy with multi GNSS constellation. In this paper, statistical assessment of static Precise Point Positioning (PPP) using GPS, GLONASS, dual system GPS/GLONASS, three system GPS/GLONASS/Galileo, GPS/GLONASS/BeiDou and multi system GPS/GLONASS/Galileo/BeiDou PPP combinations is evaluated. Observation data of seven whole days from seven IGS multi GNSS experiment (MGEX) stations is used for analysis. Position accuracy and convergence time is analyzed. Results show that the GPS/GLONASS positioning accuracy increases over GPS PPP. Standard deviations (STDs) of position errors for GPS PPP are 4.63, 3.00 and 6.96 cm in east, north and up components while STDs for GPS/GLONASS PPP are 4.10, 3.42 and 6.50 cm respectively. Root mean square for three dimension (RMS3D) for GPS/GLONASS PPP solution is 8.96 cm. With the addition of Galileo and BeiDou to the combined GPS/GLONASS further enhances the positioning accuracy. Root mean square for horizontal component reach to 5.35 cm of GPS/GLONASS/Galileo/BeiDou PPP solutions. Results analysis of GPS/GLONASS/Galileo PPP solutions show an improvement of convergence time by only 3.81% to achieve accuracy level of 3.0 cm over GPS/GLONASS/BeiDou PPP mode. Results also demonstrate that position accuracy improvement after adding BeiDou observations to the GPS/GLONASS PPP mode is not significant.
Słowa kluczowe
Rocznik
Strony
150--170
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
Bibliografia
  • Abdallah. A., and Schwieger. V. (2016). “Static GNSS precise point positioning using free online services for Africa”. Survey Review. 48, 61-77. https://doi.org/10.1080/00396265.2015.1097595
  • Abd Rabbou. M. and El-Rabbany. A. (2015). “PPP Accuracy Enhancement Using GPS/GLONASS Observations in Kinematic Mode”, Positioning. 6 1-6, https://doi.org/10.4236/pos.2015.61001 58.
  • Alkan. R., Ilçi. V., Ozulu. I., Saka. M. (2015). “A comparative study for accuracy assessment of PPP technique using GPS and GLONASS in urban areas”. Measurement: Journal of International Measurement Confederation 69, 1-8. https://doi.org/10.1016/j.measurement.2015.03.012
  • Bahadur. B., Nohutcu, M. (2019). “Comparative analysis of MGEX products for postprocessing multi-GNSS PPP”, Measurement. 145361-369, https://doi.org/10.1016/j.measurement.2019.05.094.
  • Bahadur. B., Nohutcu, M. (2018). “PPPH: a MATLAB-based software for multi-GNSS precise point positioning analysis”. GPS Solution. 22, 113. https://doi.org/10.1007/s10291-018-0777-z
  • Choy. S., Zhang. S., Lahaye, F., Héroux. P. (2013). “A comparison between GPS-only and combined GPS+GLONASS Precise Point Positioning”. Journal of Spatial Sciences. 58, 169-190. https://doi.org/10.1080/14498596.2013.808164
  • Cai. C, and Y, Gao. (2007). “Precise point positioning using combined GPS and GLONASS observations”, Journal of Global Positioning System. 6 (1) 13-22, https://doi.org/10.5081/jgps.6.1.13.
  • Cai. C, Y. Gao., L. Pan., J. Zhu. (2015). “Precise point positioning with quad constellations: GPS BeiDou, GLONASS and Galileo”, Advances in Space Research. 56 (1) 133-143, https://doi.org/10.1016/j.asr.2015.04.001.
  • Dawidowicz. K., Krzan. G. (2014). “Coordinate estimation accuracy of static precise point positioning using on-line PPP service, a case study”. Acta Geodynamica et Geophysica. 49, 37-55. https://doi.org/10.1007/s40328-013-0038-0
  • Dong. Z., and S. Jin. (2018). “3-D water vapor tomography in Wuhan from GPS, BDS and GLONASS observations”. Remote Sensing. 10, 1-15. https://doi.org/10.3390/rs10010062
  • Guo. F, Li. X, Zhang. X, Wang. J. (2017). The contribution of Multi-GNSS Experiment (MGEX) to precise point positioning. Advances in Space Research. 59, 2714-2725. https://doi.org/10.1016/j.asr.2016.05.018
  • Guo. Q. (2015). “Precision comparison and analysis of four online free PPP services in static positioning and tropospheric delay estimation”. GPS Solution. 19, 537-544. https://doi.org/10.1007/s10291-014-0413-5
  • Kouba. J. (2015). “A guide to using international GNSS service (IGS) products”, September 2015 update. http://kb.igs.org/hc/en-us/articles/ 201271873-A-Guide-to-Using-the-IGS-Products.
  • Kiliszek. D., and Kroszczynski. K. (2020). “Performance of the Precise Point Positioning method along with the development of GPS, GLONASS and Galileo systems”; Measurement.DOI:10.1016/j.measurement.2020.108009.
  • Li. R, Zheng. S, Wang. E, and Dai. L. (2020). Advances in BeiDou Navigation Satellite System (BDS) and satellite navigation augmentation technologies. Satellite Navigation. 1, 1-23. https://doi.org/10.1186/s43020-020-00010-2
  • Li. X, G. Dick, C. Lu, M. Ge, T. Nilsson, Ning, T., Wickert, J., Schuh, H., (2015a). “Multi-GNSS Meteorology: Real-Time Retrieving of Atmospheric Water Vapor from BeiDou, Galileo, GLONASS, and GPS Observations”. IEEE Transactions of Geosciences and Remote Sensing. 53, 6385-6393. https://doi.org/10.1109/TGRS.2015.2438395
  • Li. X., Zhang. X., Ren. X. (2015b). “Precise positioning with current multi constellation Global Navigation Satellite Systems: GPS, GLONASS Galileo and BeiDou”, Scientific Reports. 5 8328, https://doi.org/10.1038/srep08328
  • Li. X, Ge. M, Dai. X, Ren, X, and Schuh. H. (2015c). Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. Journal of Geodesy. 89, 607–635. https://doi.org/10.1007/s00190-015-0802-8
  • Liu. G, Zhang. X, Li. P. (2019). Improving the performance of Galileo uncombined precise point positioning ambiguity resolution using triple-frequency observations. Remote Sensing. 11. https://doi.org/10.3390/rs11030341
  • Liu. T, Yuan. Y, Zhang B, Wang. N, Tan. B, Chen. Y. (2017). Multi-GNSS precise point positioning (MGPPP) using raw observations. Journal of Geodesy. 91, 253-268. https://doi.org/10.1007/s00190-016-0960-3
  • Lou. Y, Zheng. F, and Feng. Y. (2016). Multi-GNSS precise point positioning with raw single-frequency and dual-frequency measurement models. GPS Solution. 20, 849-862. https://doi.org/10.1007/s10291-015-0495-8
  • Martín. A., Anquela. A., Capilla. R., Berné. J. (2011). “PPP technique analysis based on time convergence, repeatability, IGS products, different software processing, and GPS+GLONASS constellation”. Journal of Surveying Engineering. 137, 99-108. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000047
  • Malik. J.S. (2020). Performance analysis of Static precise point positioning using open-source gamp. Artificial Satellites. 55, 41-60. https://doi.org/10.2478/arsa-2020-0004
  • Malik. J.S., Jingrui. Z, Naqvi. N.A. (2018). Soil moisture content estimation using GNSS reflectometry (GNSS-R). 5th International Conference of Aerospace Science and Engineering. ICASE, Islamabad, Pakistan, pp. 1-9, 2017.
  • Montenbruck. O., Steigenberger. P., Prange. L., and Deng. Z. et al. (2017). “The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS) – Achievements, prospects and challenges. Adv. Sp. Res. 59, 1671-1697. https://doi.org/10.1016/j.asr.2017.01.011
  • Ogutcu. S. (2019). “Assessing the Contribution of Galileo to GPS+GLONASS PPP: Towards Full Operational Capability”, Measurement https://doi.org/10.1016/j.measurement.2019.107143
  • Pan. L, Zhang. X, Xingxing. Li, and Q. Wang. (2019). “Satellite availability and point positioning accuracy evaluation on a global scale for integration of GPS, GLONASS, BeiDou and Galileo. Adv. Sp. Res. 63, 2696-2710. https://doi.org/10.1016/j.asr.2017.07.029
  • Pan. Z, Chai. H, Kong. Y. (2017). “Integrating multi-GNSS to improve the performance of precise point positioning. Adv. Sp. Res. 60, 2596-2606. https://doi.org/10.1016/j.asr.2017.01.014
  • Su. K., Jin. K., Jiao. G. (2020). “Assessment of multi-frequency GNSS PPP models using GPS, Beidou, GLONASS, Galileo and QZSS”, Measurement Science and Technology. https://doi.org/10.1088/1361-6501/ab69d5
  • Tegedor. J, Øvstedal. O, Vigen. E. (2014). Precise orbit determination and point positioning using GPS, Glonass, Galileo and BeiDou. Journal of Geodetic Sciences. 4, 65-73. https://doi.org/10.2478/jogs-2014-0008
  • Wanninger. L. (2012). “Carrier-phase inter-frequency biases of GLONASS receivers. Journal of Geodesy. 86, 139-148. https://doi.org/10.1007/s00190-011-0502-y
  • Xia. F, Ye. S, Xia. P, and Hu. G. (2019). Assessing the latest performance of Galileo-only PPP and the contribution of Galileo to Multi-GNSS PPP. Advances in Space Research. 63, 2784-2795. https://doi.org/10.1016/j.asr.2018.06.008
  • Yigit, C.O., Gikas, V., Alcay, S., Ceylan, A. (2014). “Performance evaluation of short to long term GPS, GLONASS and GPS/GLONASS postprocessed PPP. Survey Review. 46, 155-166. https://doi.org/10.1179/1752270613Y.0000000068
  • Zhao. Q, Wang. C, Guo. J, Liu. X. (2015). “Assessment of the contribution of BeiDou GEO, IGSO, and MEO satellites to PPP in Asia-Pacific region. Sensors 15, 29970-29983. https://doi.org/10.3390/s151229780
  • Zumberge, J.F., Heftin, M.B., Jefferson, D.C., Watkins, M.M. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. 102, 5005-5017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-166992bd-d372-4a44-bb0a-b64c380db337
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.