Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The effect of bead on plate friction stir welding parameters on the tensile properties of the 70/30 brass joints was investigated using response surface method. The microstructures of the joints were characterized using optical microscopy, electron backscattered diffraction (EBSD), and transmission electron microscopy (TEM). The tensile test was conducted to measure the ultimate tensile strength and elongation of the joints. In addition, the fracture surfaces of the tensile specimens were analyzed by scanning electron microscopy (SEM). The results showed that the most effective parameters on the strength and elongation of the joints were tool rotational speed and axial force, respectively. Optimizing the parameters revealed that the maximum strength and elongation of 318.5 MPa and 54.9% can be achieved at a rotational speed of 1000 rpm, a traverse speed of 58.4 mm/min, and an axial force of 3 kN. The strengthening mechanisms of grain boundary and dislocation density effects were responsible for the higher ultimate tensile strength of the joints welded at the lower heat input conditions. Furthermore, the effect of friction stir parameters on the ultimate tensile strength and elongation of the joints has been discussed, thoroughly.
Czasopismo
Rocznik
Tom
Strony
137--146
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
- Department of Materials Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
Bibliografia
- [1] G. Çam, H.T. Serindağ, A. Çakan, S. Mistikoglu, H. Yavuz, The effect of weld parameters on friction stir welding of brass plates, Materialwissenschaft und Werkstofftechnik 39 (6) (2008) 394–399.
- [2] I. Galvão, R.M. Leal, D.M. Rodrigues, A. Loureiro, Influence of tool shoulder geometry on properties of friction stir welds In thin copper sheets, J. Mater. Process. Technol. 213 (2) (2013) 129–135.
- [3] C. Meran, The joint properties of brass plates by friction stir welding, Mater. Design 27 (9) (2006) 719–726.
- [4] H.S. Park, T. Kimura, T. Murakami, Y. Nagano, K. Nakata, M. Ushio, Microstructures and mechanical properties of friction stir welds of 60% Cu–40% Zn copper alloy, Mater. Sci. Eng. A 371 (1–2) (2004) 160–169.
- [5] G. Çam, Friction stir welded structural materials: beyond Alalloys, Int. Mater. Rev. 56 (1) (2011) 1–48.
- [6] A.M.A. Heidarzadeh, E. Nazari, H. Khodaverdizadeh, K. Rabei, Developing Empirical Relationships to Predict Tensile Strength, Elongation and Hardnesss of Friction Stir Welded Pure Copper Joints 3rd International Conference on Manufacturing Engineering, 2011.
- [7] A. Heidarzadeh, T. Saeid, A comparative study of microstructure and mechanical properties between friction stir welded single and double phase brass alloys, Mater. Sci. Eng. A 649 (2016) 349–358.
- [8] Y.-F. Wang, J. An, K. Yin, M.-S. Wang, Y.-S. Li, C.-X. Huang, Ultrafine-grained microstructure and improved mechanical behaviors of friction stir welded Cu and Cu–30Zn joints, Acta Metall. Sin. (Engl. Lett.) (2018).
- [9] A. Heidarzadeh, T. Saeid, Correlation between process parameters, grain size and hardness of friction-stir-welded Cu–Zn alloys, Rare Metals (2016) 1–11.
- [10] S. Mironov, K. Inagaki, Y.S. Sato, H. Kokawa, Development of grain structure during friction-stir welding of Cu–30Zn brass, Philos. Mag. 94 (27) (2014) 3137–3148.
- [11] G.M. Xie, Z.Y. Ma, L. Geng, Effects of friction stir welding parameters on microstructures and mechanical properties of brass joints, Mater. Trans. 49 (7) (2008) 1698–1701.
- [12] G. Cam, S. Mistikoglu, M. Pakdil, Microstructural and mechanical characterization of friction stir butt joint welded 63% Cu–37% Zn brass plate, Weld. J. 88 (11) (2009) 225s–232s.
- [13] A. Heidarzadeh, T. Saeid, V. Klemm, Microstructure, texture, and mechanical properties of friction stir welded commercial brass alloy, Mater. Charact. 119 (2016) 84–91.
- [14] A. Ozer, A. Sik, B. Cevik, M. Ozer, The effect of friction stir welding parameters on microstructure and fatigue strength of CuZn37 brass alloys, Kovove Materialy-Metallic Materials 55 (2) (2017) 107–114.
- [15] X.C. Liu, Y.F. Sun, T. Nagira, K. Ushioda, H. Fujii, Correction to: microstructure evolution of Cu–30Zn during friction stir welding, J. Mater. Sci. 53 (15) (2018), 11130-11130.
- [16] A. Heidarzadeh, H. Khodaverdizadeh, A. Mahmoudi, E. Nazari, Tensile behavior of friction stir welded AA 6061-T4 aluminum alloy joints, Mater. Design 37 (0) (2012) 166–173.
- [17] K. Elangovan, V. Balasubramanian, S. Babu, Predicting tensile strength of friction stir welded AA6061 aluminium alloy joints by a mathematical model, Mater. Design 30 (1) (2009) 188–193.
- [18] A. Mohammadzadeh, M. Azadbeh, H. Danninger, New concept in analysis of supersolidus liquid phase sintering of alpha brass, Powder Metall. 58 (2) (2015) 123–132.
- [19] R.S. Mishra, Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng.: R: Reports 50 (1–2) (2005) 1–78.
- [20] M.J. Starink, A. Deschamps, S.C. Wang, The strength of friction stir welded and friction stir processed aluminium alloys, Scr. Mater. 58 (5) (2008) 377–382.
- [21] M.J. Starink, S.C. Wang, A model for the yield strength of overaged Al–Zn–Mg–Cu alloys, Acta Mater. 51 (17) (2003) 5131–5150.
- [22] T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Progr. Mater. Sci. 60 (0) (2014) 130–207.
- [23] S. Wang, Z. Zhu, M. Starink, Estimation of dislocation densities in cold rolled Al-Mg-Cu-Mn alloys by combination of yield strength data, EBSD and strength models, J. Microsc. 217 (2) (2005) 174–178.
- [24] Y.Z. Tian, S. Gao, L.J. Zhao, S. Lu, R. Pippan, Z.F. Zhang, N. Tsuji, Remarkable transitions of yield behavior and Lüders deformation in pure Cu by changing grain sizes, Scr. Mater. 142 (2018) 88–91.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1668f4f8-6767-4168-a394-71c530f9b040