PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Applanation pressure function in Goldmann tonometry and its correction

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
So far applanation tonometry has not worked out any theoretical basis for correcting the result of intraocular pressure measurement carried out on a cornea with noncalibration dimensions by means of the Goldmann tonometer. All the tables of instrument reading corrections for cornea thickness or cornea curvature radius are based exclusively on measurements. This paper represents an attempt at creating a mechanical description of corneal apex deformation in Goldmann applanation tonometry. The functional dependence between intraocular pressure and the pressure exerted on the corneal apex by the tonometer was determined from a biomechanical model. Numerical GAT simulations, in which this function was also interrelated with the cornea’s curvature radius and thickness were run and a constitutive equation for applanation tonometry, i.e. a full analytical description of intraocular pressure as a function of the above variables, was derived on this basis. The correction factors were defined and an algorithm for correcting the measured pressure was formulated. The presented formalism puts the results of experimental tonometry in new light. Analytical correction factors need not to come exclusively from measurements. A geometric interdependence between them and their dependence on pressure have been revealed. The theoretical description of applanation tonometry contained in the constitutive equation consists of a pressure function developed for a cornea with calibration dimensions and a coefficient correcting this calibration function, dependent exclusively on the cornea’s actual thickness and curvature radius. The calibration function is a generalization of the Imbert–Fick law.
Rocznik
Strony
97--106
Opis fizyczny
Bibliogr. 22 poz., wykr.
Twórcy
autor
  • Deformable Body Mechanics Faculty Unit, Wrocław University of Technology, Wrocław, Poland
Bibliografia
  • [1] ORSSENGO G.J., PYE D.C., Determination of the true intraocular pressure and modulus of elasticity of the human cornea, B. Math. Biol., 1999, Vol. 61(3), 551–572.
  • [2] EHLERS N., BRAMSEN T., SPERLING S., Applanation tonometry and central corneal thickness, Acta Ophthalmol. Scand., 1975, Vol. 53, 34–43.
  • [3] DAMJI K.F., MUNGER R., Influence of central corneal thickness on applanation intraocular pressure, J. Glaucoma., 2000, Vol. 9, 205–207.
  • [4] DOUGHTY M.J., ZAMAN M.L., Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach, Surv. Ophthalmol., 2000, Vol. 44, 367–408.
  • [5] SHAH S., CHATTERJEE A., MATHAI M., Relationship between corneal thickness and measured intraocular pressure in a general ophthalmology clinic, Ophthalmology, 1999, Vol. 106, 2154–2160.
  • [6] SHAH S., Accurate intraocular pressure measurement – the myth of modern ophthalmology? Ophthalmology, 2000, Vol. 107, 1805–1807.
  • [7] STODTMEISTER R., Applanation tonometry and correction according to corneal thickness, Acta Ophthalmol. Scand., 1998, Vol. 76, 319–324.
  • [8] FELTGEN N., LEIFERT D., FUNK J., Correlation between central corneal thickness, applanation tonometry, and direct intracameral IOP readings, Brit. J. Ophthalmol., 2001, Vol. 85, 85–87.
  • [9] KOHLHAAS M., BOEHM A.G., SPOERL E., PÜRSTEN A., GREIN H.J., PILLUNAT L., Effect of Central Corneal Thickness, Corneal Curvature, and Axial Length on Applanation Tonometry, Archives of Ophthalmology, 2006, Vol. 124(4), 471–476.
  • [10] ELSHEIKH A., WANG D., KOTECHA A., BROWN M., GARWAYHEATH G., Evaluation of Goldmann applanation tonometry using a nonlinear finite element ocular model, Ann. Biomed. Eng., 2006, Vol. 34(10), 1628–1640.
  • [11] GUNVANT P., O’LEARY D.J., BASKARAN M., BROADWAY D.C., WATKINS R.J., VIJAYA L., Evaluation of tonometric correction factors, J. Glaucoma, 2005, Vol. 14(5), 337–343.
  • [12] LIU J., ROBERTS C.J., Influence of corneal biomechanical properties on intraocular pressure measurement, J. Cataract. Refr. Surg., 2005, Vol. 31, 146–155.
  • [13] KIRSTEIN E.M., HUSLER A., Evaluation of the Orssengo–Pye IOP corrective algorithm in LASIK patients with thick corneas, Optometry, 2005, Vol. 76(9), 536–543.
  • [14] GOLDMANN H., SCHMIDT T., Weiterer Beitrag zur Applanationstonometrie, Ophthalmologica, 1961, Vol. 141, 441–456.
  • [15] GOLDMANN H., SCHMIDT T., Über Applanations-tonometrie, Ophthalmologica, 1957, Vol. 134, 221–242.
  • [16] ŚRÓDKA W., PIERSCIONEK B.K., Effect of material properties of the eyeball coat on optical image stability, J. Biomed. Opt., 2008, Vol. 13(5), 054013.
  • [17] ŚRÓDKA W., Evaluating the material parameters of the human cornea in a numerical model, Acta Bioeng. Biomech., 2011, Vol. 13(3), 77–85.
  • [18] ŚRÓDKA W., Goldmann applanation tonometry – not as good as gold, Acta Bioeng. Biomech., 2010, Vol. 12(2), 39–47.
  • [19] Le GRAND Y., el HAGE S.G., Physiological Optics, Springer Series in Optical Sciences, Vol. 13, Springer-Verlag, Berlin, Heidelberg, New York, 1980.
  • [20] HALLBERG P., EKLUND A., SANTALA K., KOSKELA T., LINDAHL O., LINDEN C., Underestimation of intraocular pressure after photorefractive keratectomy: a biomechanical analysis, Med. Biol. Eng. Comput., 2006, Vol. 44, 609–618.
  • [21] NASH L.S., GREENE P.R., FOSTER C.S., Comparison of mechanical properties of keratoconus and normal corneas, Experimental Eye Research, 1982, Vol. 35, 413–423.
  • [22] WOLLENSAK G., Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced crosslinking, J. Cataract. Refr. Surg., 2003, Vol. 29, 1780–1785.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16642b88-40a4-4216-8ed7-6088c7f60d76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.