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1. INTRODUCTION

Feynman diagrams and their corresponding finite or infinite formal sums are the central
objects in Lagrangian approach to Quantum Field Theory (QFT). This research article
aims to explain a new combinatorial formalism in dealing with these physical type
of diagrams and expansions on the basis of graph functions. The main strategy is to
discuss the concept of convergence for an arbitrary sequence of Feynman diagrams with
respect to cut-distance topology. The original objective is to build a new description
for the algebraic renormalization machinery on infinite formal expansions of Feynman
diagrams (originated from fixed point equations of Green’s functions in QFT) in the
language of the theory of graphons.

Perturbative QFT, as the result of path integral machinery, generates Green’s
functions to encode fundamental information of physical theories on the basis of a class
of elementary decorated graphs and their formal expansions. These elementary graphs,
which are known as one particle irreducible Feynman graphs, work as the building
blocks of the physical theory to analyze complicated Feynman diagrams together
with nested or overlapping sub-divergencies. In a general configuration, divergencies
originated from Green’s functions could be classified and studied under two different
groups. The first group concerns sub-divergencies of each single Feynman diagram
which contribute to Green’s functions. These sub-divergencies have been studied under
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perturbative renormalization where thanks to the advanced mathematical treatments
and tools, we already have various theoretical methods and practical techniques to
generate finite values from ill-defined Feynman integrals. However there remain many
complicated problems in this group which require new advanced mathematical tools
to handle sub-divergencies. The second group concerns divergencies originated from
QFT-model physical theories with strong coupling constants. In this situation we
should deal with infinite formal expansions of Feynman diagrams where the self-similar
nature of Green’s functions has been concerned to formulate fixed point equations.
These equations, which are known as Dyson–Schwinger equations, address complex
situations beyond perturbation theory. Dealing with these equations is the main
challenge in High Energy Theoretical Physics [6, 13,31,32].

There are standard numerical and analytic methods for the computation of some
non-perturbative parameters in physical theories but in a general setting, these in-
vestigations have not improved rigorously our knowledge about non-perturbative
phenomena. Our best chance in this situation is to make stronger the mathematical
foundations of non-perturbative QFT. In this direction, search for some new advanced
mathematical structures originated from Dyson–Schwinger equations could be helpful
for the better understanding of the phenomenology of non-perturbative parameters
[33,35,36,40,41].

Advanced mathematical aspects of Feynman diagrams, modern QFTs and related
topics have confirmed the extraordinary applications of combinatorial techniques for
the study of quantum systems with infinite degrees of freedom. We can refer the
reader to the following selected works in this direction [7, 9–12, 18–21, 29, 30, 33–37,
39–41]. In a big picture, the original achievement of this research work is to address
another application of the theory of combinatorics to QFT. We provide a new class
of combinatorial methods for the study of sequences of Feynman diagrams such as
formal expansions generated by fixed point equations of Green’s functions. We aim
to search for a new distance on the set of Feynman graphs, making it a compact
complete space, which allows us to understand the concept of a large Feynman graph
as the limit of a sequence of finite expansions of Feynman graphs with respect to
this distance. Our framework is to embed Feynman graphs of a physical theory in
the set of graphons via the Connes–Kreimer rooted tree construction represented by
pixel pictures. Then we explain that how graph functions are capable of being useful
to create a new methodology in dealing with Dyson–Schwinger equations where as
the consequence, we will formulate a generalization of the Connes–Kreimer BPHZ
renormalization for the level of large Feynman graphs.

Graphons play a central role in the theory of graph limits which has been introduced
and developed by Lovász, Szegedy, Borgs, Chayes, Sós and Vesztergombi [2, 17, 27, 28].
These infinite combinatorial objects are actually symmetric measurable functions of
the form f : Ω× Ω −→ [0, 1] for an arbitrary probability space Ω and they could be
interpreted as the limits of enough large sequences of finite graphs such as weighted
graphs, directed graphs, multigraphs, posets, etc. If we choose the closed unit interval
as the probability space, then it is possible to show that every graph limit can be
represented by a graphon but such representations of graph limits are not unique.
In a short period of time, graphons have been applied in several different fields of
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research such as theory of large networks in Computer Science, Theory of Probability
and Statistics, Combinatorics, Measure Theory and Functional Analysis [3–5,16,22].

Problem about convergence and equivalency of graphons have led people to work
on cut norm and cut metric where converging to graph limits have been described
under different but equivalent settings. The original idea in this direction is to assign
limits to sequences of unlabeled graphs when their number of vertices tends to infinity.
In other words, a sequence of graphs is convergent, if its corresponding sequence of
random graphs converges when the number of vertices of graphs tends to infinity.
This perspective enables us to concern the notion of convergence in the context of
homomorphism densities [2, 28].

Search for any possible applications of graphons to Quantum Physics has already
been started in [36] where a new differential calculus machinery for the study of
Dyson–Schwinger equations of Green’s functions is built. This article plans to search
for new interconnections between the theory of graphons and infinite formal expansions
of Feynman diagrams which contribute to Green’s functions of a given QFT-model
physical theory with strong coupling. We find a machinery to interpret limits of
sequences of Feynman diagrams in the language of graph functions where as the
fundamental result, at first, we will obtain an enriched version of the Connes–Kreimer
renormalization Hopf algebra on graphons and at second, we will obtain a generalization
of the BPHZ perturbative renormalization which works at the level of graph limits and
cut metric. The outputs of this work is capable to provide some new combinatorial
tools in dealing with non-perturbative parameters originated from Green’s functions.

We aim to provide a new interpretation of infinite formal sums of Feynman
diagrams (originated from solutions of Dyson–Schwinger equations) in the language of
graphons. For this purpose, we formulate a graph function interpretation of infinite
trees as the limits of sequences of trees (Corollary 2.2). Then we apply the rooted tree
representation of Feynman diagrams to obtain a new graph function interpretation of
these physical diagrams (Proposition 3.1). This new perspective leads us to achieve
the concept of convergence for the infinite sequences of Feynman graphs (Corollaries
4.1 and 4.3). As the immediate applications of these investigations, we formulate
a Hopf algebraic structure on graphons (Proposition 3.2) originated from the Kreimer’s
renormalization coproduct. Then we obtain a new enrichment of the Connes–Kreimer
Hopf algebra of Feynman diagrams (Corollary 4.4) which is completed with respect
to cut-distance topology. Furthermore, we provide a new approach to deal with
Dyson–Schwinger equations in the language of graph functions and cut-distance
topology (Proposition 4.6). We show that solutions of these non-perturbative type of
equations could be encoded by classes of unlabeled graphons. Actually, these solutions
belong to a completed version of the Connes–Kreimer renormalization Hopf algebra
with respect to the n-adic topology. This topology is the result of the graduation
parameter originated from number of internal edges or vertices of Feynman graphs.
When we deal with large graphs in physical theories with strong couplings, the number
of vertices or internal edges tends to infinity which makes the n-adic distance equal to
zero which is useless. Search for a non-trivial distance on infinite graphs could be helpful
for the computation of non-perturbative parameters generated by Dyson–Schwinger
equations. In this direction, we show that the topology generated by cut-distance metric
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provides some new opportunities where we apply the graph function representation of
(large) Feynman graphs and the enriched renormalization Hopf algebra to obtain a new
modification of the BPHZ renormalization machinery for solutions of Dyson–Schwinger
equations (Corollary 4.7).

1.1. OUTSTANDING RESULTS

There are two fundamental achievements in this work which could be useful in dealing
with non-perturbative parameters. Thanks to the graph function representation of
Feynman diagrams on the basis of rooted trees (Sections 2 and 3), Corollary 4.3
and Proposition 4.6 lead us to obtain a new description of infinite formal expan-
sions of Feynman diagrams in the language of random graphs. In addition, thanks
to the existence of a new distance on the set of Feynman graphs with respect to
the cut-distance topology, Corollary 4.7 describes mathematically the structure of
an algebraic renormalization machinery which works on infinite Feynman diagrams
originated from solutions of Dyson–Schwinger equations.

2. FUNDAMENTAL STRATEGY: A NEW APPROACH TO INFINITE TREES

In this section, we plan to apply graph functions for the study of infinite sequences
of decorated rooted trees to bring a new understanding of convergent or divergent
sequences. We will present an infinite tree as a graph function generated as the limit
of a sequence of pixel pictures. In other words, if we generate pixel pictures in terms
of information which come from some simple graphs or matrices such as rooted trees,
then we will enable to release the notion of convergence for infinite sequences of rooted
trees with respect to the cut-distance topology.

An overview on the basic structure of graphons has been provided in Appendix A
and here we directly deal with decorated rooted trees.

Definition 2.1. A rooted tree is a finite simply connected graph t which contains
a set V (t) of vertices, a set E(t) of edges and a distinguished vertex rt ∈ V (t). It is
called planar, if there exists an extra information which embeds this tree in the plane.
Otherwise, it is called non-planar.

(i) A rooted tree t is called vertex-decorated by a set S if there exists a bijection
map αS : V (t) −→ S which determines the label of each vertex of t.

(ii) A rooted tree t is called edge-decorated by a set T if there exists a bijection map
αT : E(t) −→ T which determines the label of each edge of t.

(iii) A rooted tree t is called (vertex,edge)-decorated by a pair (S, T ) if there exists
a couple (αS , αT ) of bijective maps which obey the conditions (i) and (ii).

An isomorphism between two decorated rooted trees t1, t2 is a pair of bijections
(fV , fE) such that fV : V (t1) −→ V (t2) and fE : E(t1) −→ E(t2) which preserve roots,
decorations and all incidences. Incidence means that for each vertices v1, v2 ∈ V (t1),
fV (v1), fV (v2) ∈ V (t2), fE(v1v2) = fE(v1)fE(v2) ∈ E(t2).
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If we have labels of the class vertex-decorated, then the beginning and ending
vertices of each edge in the tree have decorations. This information provides natural
decorations on edges of the tree. For example, the edge between two vertices vi and vj
is decorated by vivj .

A rooted forest vertex-decorated by S is an ordered set F = {t1, . . . , tn} of
decorated rooted trees. Two rooted forest F1 = {t1, . . . , tn} and F2 = {t′1, . . . , t′m} are
isomorphic if m = n and there exists a permutation ρ ∈ Sn together with isomorphisms
fi : ti ' t′σ(i).

Each isomorphism class of labeled rooted trees contains different possible decora-
tions which could be defined on edges of each tree. It is possible to produce a multi-edge
complicated graph with respect to each class where each edge in this new graph is the
symbol of a particular decoration. Work on the sequences of these multi-edges graphs
could be interesting when we want to discuss about the notion of homomorphism
density. At this level, since we plan to concern the graph limit of an infinite sequence
of finite graphs, we use basic format of trees for the presentation of classes of trees
to simplify the original idea of our machinery. Let us discuss about the existence of
a limit for an infinite sequence of classes of rooted trees in terms of some examples.

As the first example, we proceed by finding a limit for the infinite sequence (ln)n≥1
of classes of ladder trees given as in Figure 1.
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Fig. 1. A sequence of ladder trees

We can associate a pixel picture to each ladder tree ln where if there exists a direct
edge between two vertices, then the corresponding box in the pixel graph would be
black and otherwise, the box would be white. In terms of this rule, the sequence in
Figure 1 could be replaced by the following sequence of finite pixel pictures in Figure 2.
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Fig. 2. A pixel picture representation of ladder trees

Since the adjacency matrix is a symmetric matrix, we connect the black points in the
above of the main diagonal by segments and separately, connect the black points in
the below of the main diagonal by segments. When n tends to infinity, this sequence of



432 Ali Shojaei-Fard

pixel pictures together with added segments almost surely converges to the following
presentation in Figure 3, which could be considered as the domain of a symmetric
Lebesgue measurable function from [0, 1]× [0, 1] ⊂ R2 to [0, 1] ⊂ R.

Fig. 3. The domain of a labeled graphon for the infinite ladder tree

The labeled graphons associated with the diagram in Figure 3 can be determined by
the class of graph functions (with respect to the relation (6.1) given in Appendix A)
which contains functions with the general form f ε (for each ε > 0) such that it has
the value 1 on the set

{(x, y) ∈ [0, 1]× [0, 1] : y = (1− ε)− x or y = (1 + ε)− x}

and 0 on other points.
Therefore the unlabeled graphon originated from Figure 3 leads us to the existence

of a convergence for the initial sequence (in Figure 1) of ladder trees.
As the second example, we proceed by finding a limit for the following infinite

sequence of classes of rooted trees given in Figure 4.
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Fig. 4. A sequence of non-planar rooted trees with increasing number of leaves

We can replace the sequence in Figure 4 by the following infinite sequence of pixel
pictures (labeled graphons) given in Figure 5.
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Fig. 5. A pixel picture representation

If we connect the black points in the horizontal direction by adding segments and
separately, connect the black points in the vertical direction by adding segments,
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then whenever n tends to infinity, this sequence of pixel pictures together with added
segments almost surely converges to the following presentation in Figure 6.

Fig. 6. The domain of a labeled graphon for the tree with infinite number of leaves

This presentation could be considered as the domain of a symmetric Lebesgue
measurable function from [0, 1] × [0, 1] ⊂ R2 to [0, 1] ⊂ R. The labeled graphons
associated with the diagram in Figure 6 can be determined by the class of graph
functions (with respect to the relation (6.1) given in Appendix A) with the general
form gε (for each ε > 0) such that it has the value 1 on the set

{(x, y) ∈ [0, 1]× [0, 1] : x = ε and 0 ≤ y < 1− ε}
∪ {(x, y) ∈ [0, 1]× [0, 1] : y = 1− ε and ε < x ≤ 1}

and the value 0 on its complement.
Therefore the unlabeled graphon originated from Figure 6 leads us to the existence

of a convergence for the initial sequence (Figure 4) of rooted trees.
As the third example, we proceed by finding a limit for the following infinite

sequence of classes of non-planar rooted trees given in Figure 7.
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Fig. 7. A sequence of non-planar binary rooted trees

We can replace the sequence in Figure 7 by the following sequence of pixel pictures
(as labeled graphons) given in Figure 8.
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Fig. 8. A pixel picture representation of binary trees

If we connect the black points in the above of the main diagonal by adding horizontal
and vertical segments and separately, connect the black points in the below of the main
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diagonal by adding vertical and horizontal segments, then whenever n tends to infinity,
this sequence of pixel pictures together with added segments almost surely converges
to the following presentation in Figure 9.

Fig. 9. The domain of a labeled graphon for the infinite binary tree

This presentation could be considered as the domain of a symmetric Lebesgue
measurable function from [0, 1]× [0, 1] ⊂ R2 to [0, 1] ⊂ R. The separate steps in this
graphon, which live in the above and below of the main diagonal, come from steps of
length two in the matrices which goes away when n tends to infinity. But the distance
between steps (vertical segments in the above part and horizontal segments in the below
part) could be decreased into arbitrary small ε > 0. The labeled graphons associated
with the diagram (in Figure 9) can be determined by the class of graph functions
such as hε (with respect to the relation (6.1) given in Appendix A). It contains the
characteristic function for the set of step by step sub-intervals together with added
small segments presented in the above diagram.

Therefore the unlabeled graphon originated from Figure 9 leads us to the existence
of a convergence for the initial sequence (in Figure 7) of rooted trees.

Corollary 2.2 (first fundamental definition). A sequence {tn}n≥1 of classes of la-
beled rooted trees is convergent when n goes to infinity, if the corresponding sequence
{[f tn ]}n≥1 of unlabeled graphons converges to a unique unlabeled graphon with respect
to the cut-distance topology.

Proof. Unlabeled graphons and cut-distance topology have been introduced in Ap-
pendix A. The above examples lead us to formulate the limit of a sequence of rooted
trees in terms of the behavior of its corresponding sequence of pixel pictures (as labeled
graphons). But we have mentioned that by changing label or the style of pixel picture,
we will get another result which makes problem for a well-defined concept. If we apply
the notion of “unlabeled graphon”, which eliminates the dependency of graphons on
labels by working on the equivalence class (6.1) defined in Appendix A, we can achieve
a well-defined concept. In a general configuration, a convergent sequence {[f tn ]}n≥1
of unlabeled graphons under the cut-distance topology could determine the domain
of a symmetric Lebesgue measurable function such as U from [0, 1]× [0, 1] ⊂ R2 to
[0, 1] ⊂ R with the corresponding unlabeled graphon class [U ]. The uniqueness of this
limit is discussed in Appendix B. Now if we consider the pixel picture presentation of
the class [U ] as one of its labeled graphons, then we can associate an infinite graph t
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to U with the corresponding graphon class f t. Thanks to the uniqueness of the limit
and the fact that f t ∈ [U ], we have [U ] = [f t].

The infinite graph t with respect to the class [f t], which we name it a large tree, is
the unique limit of the sequence {tn}n≥1 with respect to the cut-distance topology.

The first fundamental definition means that for a given sequence {tn}n≥1 of classes
of decorated rooted trees, each sequence {lgn}n≥1 of labeled graphons where each
term lgn ∈ [f tn ] is convergent to a labeled graphon lg ∈ [f t] with respect to the metric
(6.4) given in Appendix A.

Now we have the concept of convergence at the level of trees but there still remains
one question about the identification of the infinite graph t which is addressed by
the graphon [f t]. Since we are dealing with infinite graphs, we can approximate them
by using random graphs. Lemma 6.6 in Appendix A confirms that each sequence of
random graphs with respect to the graphon [f t] converges to that graphon. We can
consider random graphs as labeled graphons, therefore for each n ≥ 1, let [R(n, f t)]
be the random graph class (as an unlabeled graphon) of order n with respect to the
unlabeled graphon [f t] such that n is the number of selected nodes in the closed
interval [0, 1]. Now for enough large n, its corresponding random graph class presents
approximately the large tree t.

In Appendix B, we have provided a proof about the uniqueness of the limit of
a convergent sequence of decorated rooted trees with respect to the cut-distance
topology.

As the last result of this section, we provide a new interpretation of large trees in
the language of random graphs.

Corollary 2.3. For a given large tree t, which is the result of the convergence of
an infinite sequence {tn}n≥1 of decorated rooted trees, there exists a sequence (Rn)n≥1
of random graphs associated to trees tns which converges to the unique unlabeled
graphon [f t] with respect to the cut distance topology.

Proof. Let there exists an infinite sequence {tn}n≥1 of decorated rooted trees which
converges to the large tree t under the cut-distance topology. Following the first
fundamental definition (Corollary 2.2), we know that the corresponding sequence
{[f tn ]}n≥1 of unlabeled graphons converges to the unlabeled graphon [f t].

Usually we can see rooted trees as partially ordered sets. Consider the standard
orientation on rooted trees which begins from the root and ends in leaves of a tree.
This orientation inherits a partial order relation ≤ on vertices of a rooted tree which
allows us to interpret a rooted tree as a poset where the root is the minimal object
and leaves are the maximal elements [34].

For each n ≥ 1, choose a finite subset V (tn, ρn) in the closed interval [0, 1] which
contains |V (tn)| nodes in [0, 1] such that these nodes are selected by projections of
vertices of the tree tn under a fixed injective embedding map ρn of partial orders from
tn in [0, 1]. This means that

∀vi, vj ∈ tn : vi ≤ vj ⇐⇒ ρn(vi) ≤ ρn(vj).
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In the next step, for each n ≥ 1, build a random graph Rn (as a labeled graphon
which belongs to [f tn ]) in terms of the points in the subset V (tn, ρn) where for
each pair vi, vj ∈ V (tn, ρn), the corresponding edge vivj is included with probability
f tn(vi, vj).

Now thanks to the formula (6.4), Lemma 6.6 in Appendix A and the first fundamen-
tal definition (Corollary 2.2) with probability one, the sequence {Rn}n≥1 converges to
the graphon f t under the cut-distance topology when n goes to infinity.

3. FEYNMAN DIAGRAMS UNDER A NEW COMBINATORIAL SETTING

Under a mathematical setting, a Feynman diagram Γ is a finite decorated graph
which contains a set of vertices as the symbol of interactions, a set of internal edges
as the symbol of virtual elementary particles and a set of external edges as the
symbol of elementary particles. Decorations provide essential physical information
such as types of elementary particles and their momenta which obey the conservation
law. Sub-divergencies which live in iterated Feynman integrals have been encoded
via nested or overlapping loops. Removing these infinities has been interpreted via
a Hopf algebraic formalism where the renormalization coproduct is the mathematical
reformulation of the Zimmermann’s forest formula. This mathematical treatment,
which generates an infinite dimensional complex Lie group, has led us to a spectrum of
advanced mathematical tools for the production finite values from ill-defined Feynman
integrals [8, 14,15,24,29,34].

In this part we plan to explain a new mathematical interpretation of Feynman
diagrams on the basis of graph functions. We apply rooted tree representation
of Feynman diagrams to determine a class of infinite graphs which contribute to
limits of sequences of finite Feynman diagrams under a topological setting. This
study will have two fundamental achievements where we will obtain the structure
of a Hopf algebra on a class of graphons and then we will find a new description of
solutions of Dyson–Schwinger equations in the language of graphons and cut-distance
topology.

The Connes–Kreimer Hopf algebra of rooted trees enjoys a universal property which
enables us to study perturbative renormalization machinery in a renormalizable QFT
via combinatorial tools. The basic strategy in this universal setting is to use decorations
on vertices and edges such that each vertex in a tree is the symbol for a simple
primitive loop and each edge between two vertices in a tree presents the positions of
the related loops (sub-divergencies) with respect to each other and the whole Feynman
diagram. If there is no direct edge or any sequence of edges which connects two
vertices in the tree, then it means that the corresponding two loops are independent
from each other in the original graph. This model works nice for Feynman diagrams
together with nested sub-divergencies. For overlapping sub-divergencies, there are some
challenges but the corresponding tree representation could be a linear combination
of decorated rooted trees. We refer the reader to [1, 12, 23, 24] for further details in
this issue.
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Generally speaking, there exists an injective Hopf algebraic homomorphism Ξ from
the Connes–Kreimer renormalization Hopf algebra HFG(Φ) to the renormalization
Hopf algebra of non-planar rooted trees decorated by primitive 1PI Feynman diagrams
in Φ. For each Feynman graph Γ with the general form

Γ =
kj∏

i=1
Γj ?j,i γj,i,

where r, k1, . . . , kr are some positive integers and Γjs are 1PI primitive sub-graphs,

Ξ : Γ 7−→
r∑

j=1
B+

Γj ,Gj,i

[ kj∏

i=1
Ξ(γj,i)

]
(3.1)

such that Gj,is are the gluing information with respect to the insertion operator ?j,i
[24]. This morphism is the key tool for us to interpret Feynman diagrams in terms of
decorated non-planar rooted trees. Now according to our explained strategy, which
relates rooted trees with the theory of graphons under pixel pictures, we are going to
interpret Feynman diagrams in terms of pixel pictures.

As an example, consider the following infinite sequence of Feynman diagrams (see
Figure 10) which are diagrams in a simplified toy model theory.

, , , . . .

Fig. 10. A sequence of Feynman diagrams with increasing number of nested loops

This sequence shows Feynman diagrams with many many number of nested loops for
large n which reports the appearance of iterated integrals together with sub-divergencies
inside of the main integral. The main question is that where does this sequence go and
what does it mean? Work on its decorated tree version could be helpful. So choose
a type of decoration which restores each simple loop such as in Figure 11 in a vertex
of the tree such that edges in the tree make clear positions of all loops in the original
Feynman diagram with respect to each other and the original diagram.

Fig. 11. A primitive 1PI Feynman diagram

Therefore the sequence in Figure 10 generates the infinite sequence in Figure 1 of
decorated non-planar rooted trees which tends to the graphon in Figure 3 when n
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goes to infinity. This observation, as an intension, encourages us to interpret the
convergence of the original sequence in Figure 10 on the basis of the infinite type
graphon in Figure 3.

As other example, consider another infinite sequence of Feynman diagrams in
a simplified toy model theory which is given in Figure 12.

, , , . . .

Fig. 12. A sequence of Feynman diagrams with increasing number of independent loops

This sequence shows Feynman diagrams with many many independent nested
loops for large n. If we want to understand where this sequence goes, then we need
to apply its decorated tree interpretation. Using the type of decorations applied in
the previous example leads us to the infinite sequence in Figure 4 of decorated rooted
trees corresponding to the sequence in Figure 12 which tends to the graphon in Figure
6 when n goes to infinity. This observation, as an intension, encourages us to interpret
the convergence of the original sequence in Figure 12 on the basis of the infinite type
graphon in Figure 6.

Now it is time to concern the possibility of rebuilding a Feynman graph in terms of
graphons. For this purpose we require to modify the renormalization coproduct at the
level of pixel pictures to obtain a procedure which reconstructs uniquely a Feynman
diagram (in a toy model) in terms of information given by an unlabeled graphon or an
equivalence class of labeled graphons. By working on trees (as simple graphs), we can
see what is happening to the pixel picture related to a Feynman diagram during the
application of this specific coproduct. As an example, consider the Feynman diagram Γ
in a simplified toy model theory (see Figure 13).

Fig. 13. A Feynman diagram with nested and independent loops

Its rooted tree representation tΓ is given in Figure 14 by the decorated non-planar
rooted tree.
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•5 •6
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Fig. 14. The tree representation of a Feynman diagram

The pixel picture ptΓ associated to the tree tΓ can be determined by this rule that for
any direct edge between two vertices, its corresponding box is black and otherwise the
box is white.

It is important to remark that the tree tΓ is decorated such that the vertex
with number 1 (as the root) is the symbol of the main divergent subdiagram in Γ
and other numbers in vertices tell us about nested loops in the original graph Γ and
their positions with respect to each other. The proper sub-trees generated by the
renormalization coproduct determine the corresponding pixel pictures pt1 , . . . , pt11

such that the initial pixel picture ptΓ is the result of the union of them. But since there
are some intersections among these pixel pictures, we can not uniquely correspond
a sub-tree to each pixel picture to rebuild uniquely the original graph. In general, each
of these pixel pictures does not deliver us a unique rooted tree because for each two
vertices vi and vj , which are connected to each other, we have three possibilities to
identify edges. The one candidate is the edge from vi to vj , other is the edge from vj
to vi and the third one is both edges at the same time (which is not a tree). Sometimes
this issue does not allow us to identify correctly the root. For example, we can have
a pixel picture which could give us two classes of sub-trees with different vertices 1
and 2 as roots. There is also another issue about the used labeling for pixel pictures
which should be paid attention. Generally speaking, if we change the labeling on pixel
pictures, then we can get completely different rooted trees.

This class of challenges could be solved by modifying the decorations of trees.
In this case, for any given Feynman diagram, we concern orientations as a new class of
decorations on edges of the corresponding tree. These orientations on edges allow us
to uniquely identify the situation between two nested loops. Under this new labeling,
we can relate a class of pixel pictures to these oriented labeled rooted trees where if
there exists an edge from vi to vj , then the corresponding box in the pixel picture has
a black color.

Proposition 3.1. For each Feynman diagram Γ in a physical theory, there exists
a unique graphon class [f tΓ ] as the unlabeled graphon with respect to Γ such that this
graphon class has enough information to rebuild uniquely the original diagram Γ.

Proof. In general, we have two classes of sub-divergencies in Feynman diagrams and
therefore we divide the proof into two different situations.

Case (i). For a given Feynman graph Γ with no overlapping sub-divergencies, there
exists a unique decorated oriented non-planar rooted tree tΓ. Since rooted trees are
simple type graphs, Lemma 6.5 in Appendix A identifies uniquely the graphon class
[f tΓ ] (as the unlabeled graphon) with respect to the diagram Γ. At first we build
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a labeled graphon f tΓ which belongs to the class [f tΓ ]. Let v1, . . . , vn be decorations
of vertices of the tree tΓ such that each vi is the symbol of a nested loop (a primitive
1PI Feynman sub-graph of Γ) and each edge between vi and vj reports the position
of nested loops with respect to each other. If x ∈ (0, 1], we define i = dnxe and set
ux = vi to be the ith vertex of tΓ. For x = 0 we set ux = v1 and define

f tΓ(x, y) :=
{

1 if ux and uy are adjacent,
0 otherwise.

Now consider the pixel picture ptΓ (as a labeled graphon) generated by the tree tΓ such
that ptΓ ∈ [f tΓ ]. It produces an adjacency matrix which is a symmetric matrix. Restrict
this matrix into its corresponding upper triangular matrix. The class of decorated
oriented non-planar rooted trees with respect to this upper triangular type matrix
provides enough materials to rebuild the original graph Γ.

Case (ii). Suppose Γ has overlapping sub-divergencies. There exists a linear combi-
nation uΓ := t1 + . . .+tn of finite number of decorated oriented non-planar rooted trees
which corresponds to the original diagram Γ. Now thanks to Lemma 6.5 in Appendix A,
we can determine a unique graphon class [fuΓ ] (as the unlabeled graphon) with respect
to the diagram Γ. The labeled graphons fuΓ corresponding to uΓ can be determined in
terms of the normalization of the combination of labeled graphons f t1 , . . . , f tn which
means that

fuΓ(x, y) := f t1(x, y) + . . .+ f tn(x, y)
|f t1(x, y) + . . .+ f tn(x, y)| .

Now similar to the Case (i), the pixel picture puΓ guides us to rebuild the original
graph Γ.

Proposition 3.2. Let Gsimple
[0,1] be the set of all isomorphism classes which are unlabeled

graphons with respect to finite simple graphs. Consider the commutative polynomial
algebra generated by symbols [f t], which represent unlabeled graphons in Gsimple

[0,1] , over
the field K with characteristic zero. Then there exists a renormalization type of Hopf
algebra structure on Gsimple

[0,1] .

Proof. Proposition 3.1 enables us to modify the renormalization coproduct on Feynman
diagrams (and rooted trees) for graphons in Gsimple

[0,1] .
At the first stage, this algebra is unital associative such that the graphon class

with respect to the empty graph is the unit. In addition, the number of vertices of
simple graphs determines a grading structure on this algebra.

At the second stage, we extend this polynomial type algebra to a bialgebra Hsimple

such that its counit ε : Hsimple −→ K is given by

ε([f t1 ] . . . [f tn ]) =
{

0 if [f t1 ] . . . [f tn ] 6= 1,
1 otherwise.

On the other hand, define a coproduct on the generators of Hsimple and then extend it
in a linear way which produces an algebra morphism. Consider an unlabeled graphon
[f t] with the corresponding decorated oriented non-planar rooted tree t. Applying
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the decoration type explained by Figure 11 allows us to identify a unique Feynman
graph Γ corresponding to the tree t in a simplified toy model physical theory. Now
thanks to the renormalization coproduct on Feynman diagrams, define

∆simple([f t]) =
∑

[f tγ ]⊗ [f tΓ/γ ] (3.2)

such that the sum is taken over all unlabeled graphons [f tγ ] generated by the rooted
tree representation tγ of γ and [f tΓ/γ ] is the unlabeled graphon corresponding to the
complement graph Γ/γ.

At the third stage, thanks to the addressed grading structure on Gsimple
[0,1] and the

coproduct (3.2), the required antipode on Hsimple could be defined inductively.

4. A NEW PERSPECTIVE ON INFINITE EXPANSIONS
OF FEYNMAN DIAGRAMS ON THE BASIS OF GRAPHONS

The reinterpretation of the Bogoliubov–Zimmermann’s forest formula in the language
of the theory of words ([6,8,41]) has opened a new approach in dealing with Feynman
diagrams on the basis of new combinatorial tools such as decorated trees and theory of
Hall sets. Now thanks to the first fundamental definition (Corollary 2.2), it is possible
to initiate a new understanding of infinite sequences of Feynman graphs in the context
of graphons. This new perspective will lead us to deal with infinite formal series of
Feynman diagrams originated from Dyson–Schwinger equations under a topological
setting.

We have enough materials to inherit a notion of distance among combinatorial
Feynman diagrams which leads us to define convergence or divergency of infinite
sequences of Feynman diagrams with respect to the cut-distance topology.

Corollary 4.1 (second fundamental definition). A sequence {Γn}n≥1 of Feynman
diagrams in a given physical theory is convergent when n goes to infinity, if its
corresponding sequence {[f tΓn ]}n≥1 of unlabeled graphons converges to the class [f tΓ ]
with respect to the cut-distance topology.

Proof. We have almost explained the machinery to interpret a given finite Feynman
diagram Γn via its corresponding unique unlabeled graphon class [f tΓn ]. In short, we
consider the injective Hopf algebraic homomorphism Ξ (3.1) to present Γn in terms of
a decorated oriented non-planar rooted tree tΓn . Lemma 6.5 in Appendix A enables us
to formulate the unlabeled graphon class [f tΓn ] with respect to the simple graph tΓn .

Now thanks to Proposition 3.1 and the first fundamental definition (Corollary 2.2),
we can formulate the concept of convergence for the sequence {Γn}n≥1 with respect
to the behavior of the corresponding sequence {[f tΓn ]}n≥1 of unlabeled graphons. In
other words, the convergent sequence {[f tΓn ]}n≥1 of unlabeled graphons under the
cut-distance topology could determine the domain of a symmetric Lebesgue measurable
function such asW from [0, 1]×[0, 1] to [0, 1] with the corresponding unlabeled graphon
class [W ]. The uniqueness of this limit is discussed in Appendix B. Now if we consider
the pixel picture presentation of the class [f tΓ ] as one of its labeled graphons, then
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we can associate a large tree tΓ to W with the corresponding graphon class [f tΓ ].
Thanks to the uniqueness of the limit and the fact that f tΓ ∈ [W ], we have [f tΓ ] = [W ].
On the other hand, thanks to the injective Hopf algebraic homomorphism Ξ (3.1),
we can determine uniquely a physical graph Γ with respect to tΓ.

This infinite type of graph Γ, which we name it a large Feynman diagram, is the
unique limit of the sequence {Γn}n≥1 with respect to the cut-distance topology.

The second fundamental definition tells us that each sequence {lgn}n≥1 of labeled
graphons where each term lgn ∈ [f tΓn ] is convergent to an infinite labeled graphon
lg ∈ [f tΓ ] with respect to the cut-distance topology generated by (6.2) in Appendix A.
The uniqueness of this limit has been discussed in Appendix B.

The distance between two (large) Feynman diagrams Γ1,Γ2 can be defined by the
cut-distance metric between their corresponding unlabeled graphons [f tΓ1 ] and [f tΓ2 ].

Thanks to this new graphon approach to Feynman diagrams, now we enable to
apply random graphs to interpret the structure of the large graph Γ with more details.

Corollary 4.2. An unlabeled graphon [f tΓ ] could be approximated by a sequence of
random graphs.

Proof. According to Lemma 6.6 in Appendix A, each sequence of random graphs,
which is generated by the unlabeled graphon [f tΓ ], is convergent to that graphon.
Consider random graphs as labeled graphons such that for each n ≥ 1, let [R(n, f tΓ)]
is the random graph class (unlabeled graphon) of order n with respect to the graphon
[f tΓ ] and n selected nodes in the closed interval [0, 1]. So now for enough large n,
the corresponding random graph class could be an estimation of the large Feynman
graph Γ.

Corollary 4.3. For a given large Feynman graph Γ, which is the result of the con-
vergence of an infinite sequence {Γn}n≥1 of finite Feynman diagrams, there exists
a sequence (Rn)n≥1 of random graphs associated to graphs Γns which converges to the
unique unlabeled graphon [f tΓ ] with respect to the cut distance topology.

Proof. Let there exists an infinite sequence {Γn}n≥1 of finite Feynman diagrams which
converges to the large graph Γ under the cut-distance topology. In terms of the second
fundamental definition (Corollary 4.1), there exists a sequence of unlabeled graphons
such as {[f tΓn ]}n≥1 which converges to [f tΓ ].

For each n ≥ 1, make a finite subset V (Γn, ρn) in the closed interval [0, 1] with
respect to the Feynman diagram Γn. This set contains |V (tΓn)| nodes in [0, 1] which is
the number of vertices in the rooted tree tΓn corresponding to the graph Γn. These
nodes are selected by projections of the vertices in the graph tΓn under a fixed injective
poset type embedding map ρn from the tree tΓn (as a poset) in the interval [0, 1]. Now
define a sequence {Rn}n≥1 of random graphs such that for each n ≥ 1, the graph Rn
(as a labeled graphon which belongs to [f tΓn ]) could be built in terms of the points in
the subset V (Γn, ρn) where for each pair vi, vj ∈ V (Γn, ρn), the corresponding edge
vivj is included with probability f tΓn (vi, vj).

Thanks to the formula (6.4) and Lemma 6.6 in Appendix A, Corollary 2.3, Propo-
sition 3.1, the second fundamental definition (Corollary 4.1) and Lemma 7.2 in
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Appendix B, with probability one, the sequence {Rn}n≥1 converges to the graphon
f tΓ under the cut-distance topology when n tends to infinity.

Another consequence of the second fundamental definition is to enrich the
Connes–Kreimer renormalization Hopf algebra of Feynman diagrams with respect to
the cut-distance topology.

Corollary 4.4. There exists a complete and compact metric structure on the space
of Feynman diagrams of a given physical theory Φ which is comaptible with the
renormalization Hopf algebra.

Proof. We plan to show that the renormalization Hopf algebra HFG(Φ) on Feynman
diagrams in Φ can be equipped by the cut-distance metric d�. It leads us to obtain
a complete and compact metric structure on the space of Feynman diagrams. In ad-
dition, we show that the renormalization coproduct respects convergence under the
cut-distance topology.

Let Γ be a large graph as the limit of a sequence of finite Feynman graphs such
as {Γn}n≥0. Thanks to Corollary 4.1, the corresponding sequence {[f tΓn ]}n≥0 of
unlabeled graphons associated to finite (simple) graphs tΓn converges to [f tΓ ] when n
tends to infinity with respect to the cut distance topology. Thanks to Proposition 3.2,
by induction, it can be seen that the sequence {∆simple([f tΓn ])}n≥0 converges to
∆simple([f tΓ ]) with respect to the cut-distance topology when n tends to infinity. It
shows the compatibility of the enriched coproduct with the cut-distance topology.
Thanks to the standard graduation parameter on the Hopf algebra of graphons, the
antipode could be formulated inductively in terms of the coproduct which means
that we can have the compatibility of the antipode with respect to the cut-distance
topology.

Now it remains to modify this compatibility for the Connes–Kreimer renormal-
ization coproduct and for this purpose consider the injective morphism which sends
each finite Feynman graph Γ to its unique graphon class [fΓ] which is determined
by Proposition 3.1. Then apply Proposition 3.2, Corollary 4.1 and Lemma 7.2 in
Appendix B to extend this morphism naturally to achieve a Hopf algebraic injective
from the Connes–Kreimer renormalization Hopf algebra HFG(Φ) to the Hopf algebra
Hsimple of graphons.

The resulting Hopf algebra is called the enriched renormalization Hopf algebra and
denoted by Hd�

FG(Φ). The distance d� is obtained in terms of the embedding in the
space of graphons. A completion, which concerns infinite graphs, should be taken in
order to obtain a compact metric space. It means that Hd�

FG(Φ) is an enrichment of
the renormalization Hopf algebra.

This completion will help us improve our previous efforts about the construction of
a renormalization program on Dyson–Schwinger equations under an algebro-geometric
setting [33, 35]. Infinite graphs, which live in the boundary of this complete space, are
actually capable to encode solutions of Dyson–Schwinger equations. This means that
the enriched Connes–Kreimer renormalization Hopf algebra is capable to encode the
coproduct of a given large Feynman diagram. It can be done in terms of the limit of a
sequence of co-products of finite Feynman graphs which tends to the original large



444 Ali Shojaei-Fard

graph with respect to the cut-distance topology. We plan to concern this observation
with more details which leads us to build the modified version of the BPHZ perturbative
renormalization for Dyson–Schwinger equations in the language of graph functions.
For this purpose, at first, we show that solutions of Dyson–Schwinger equations could
be encoded by the enriched Hopf algebra Hd�

FG(Φ) which leads us to describe the
convergence of this class of non-perturbative type of equations in the context of
graphons and cut-distance topology.

Consider Φ as a renormalizable physical theory with the corresponding Hopf algebra
H = HFG(Φ) of Feynman diagrams. Define a chain complex C = {Cn,b}n≥0 such
that for each n, Cn is the set of all linear maps T from H to H⊗n and C0 is the field.
Thanks to the renormalization coproduct, consider the operator

bT := (id⊗ T )∆ +
n∑

i=1
(−1)i∆iT + (−1)n+1T ⊗ I (4.1)

as the coboundary operator. The corresponding cohomology group H1 generates
Hochschild one cocycle. For each primitive 1PI Feynman diagram γ, if the insertion of
a diagram into another graph does not break the compatibility between B+

γ and the
renormalization coproduct, then the operator B+

γ is a 1-cocycle.
Definition 4.5. Given a family {γn}n≥1 of primitive 1PI Feynman diagrams with
the corresponding Hochschild one cocycles {B+

γn}n≥1, a class of combinatorial DSEs
is defined by

X = I +
∑

n≥1
αnωnB

+
γn(Xn+1). (4.2)

Each equation DSE determines an infinite formal expansion of Feynman diagrams
and the huge challenge would be to find a meaningful solution for this class of equations.
The unique solution X =

∑
n≥1 α

nXn of DSE can be given in terms of the recursive
relations of the form

Xn =
n∑

j=1
ωjB

+
γj

( ∑

k1+...+kj+1=n−j, ki≥0
Xk1 . . . Xkj+1

)
(4.3)

such thatX0 is the empty tree. Each termXn is produced on the basis of the terms with
the lower degrees and furthermore, terms Xns play the role of generators for a Hopf
sub-algebra associated to the equation DSE [1,18,19, 25,26, 40,41]. This presentation
of the solution X, which belongs to the completion of H[[α]] with respect to the
n-adic topology, has been applied as a starting point to build some new mathematical
structures which are capable to encode non-perturbative parameters [33,35,36].
Proposition 4.6. Consider an equation DSE of the form (4.2) with the unique
solution X =

∑
n≥0Xn. Make a new sequence {Yn}n≥1 of partial sums of {Xn}n≥0

such that each element of this sequence includes a finite number of Xns as the following
way

Yn := X1 + . . .+Xn. (4.4)
The sequence {Yn}n≥1 converges to X with respect to the cut-distance topology.
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Proof. We will show that the construction of the n−adic topology originated from the
graduation parameter on Feynman graphs leads us to determine a sequence of random
graphs corresponding to each Dyson–Schwinger equation. In this situation, thanks
to Lemma 6.6 in Appendix A, we will show that this sequence is convergent with
respect to the cut-distance topology. This new relation will be built on the basis of the
graph function representation of infinite rooted trees and rooted tree representation
of Feynman diagrams which have led us to a new graphon type interpretation from
large Feynman graphs explained in the previous parts.

We previously have seen that a pixel picture is a graphic model which is produced
in terms of the adjacency matrix. They correspond to particular decorations of the
original graph which means that an unlabeled graph could have several representations.

We need to introduce a sequence of scaling pixel pictures (or graphons) such as
(Rn)n≥0 which converges to the unique class [f tX ] as the unlabeled graphon associated
to the large graph X when n tends to infinity.

Our plan is to make each Rn as a random graph with a particular edge probability.
On the one side, the Connes–Kreimer Hopf algebra H = HFG(Φ) is connected graded
finite type with respect to the number of internal edges. So we have H =

⊕
n≥0Hn

such that for each n, Hn is the homogeneous component of degree n. This grading
gives us an increasing filtration H =

⊕
n≥0H

n such that for each n, Hn =
⊕n

k=0Hk.
Therefore for each Feynman diagram Γ ∈ H, there exists some components of H which
contains Γ. Define a new parameter

val(Γ) := max
{
n ∈ N : Γ ∈

⊕

k≥n
Hk

}
. (4.5)

It leads us to generate a concept of distance with respect to the filtration on elements
of H which is given by

d(Γ1,Γ2) := 2−val(Γ1−Γ2). (4.6)
The induced topology corresponding to (4.6) is known as the n-adic topology. The
completion of the Hopf algebra H with respect to this topology is the extended Hopf
algebra H =

∏
n≥0Hn which has elements of the form

∑
n≥0 Γn such that Γn ∈ Hn. It

is shown that solutions of combinatorial DSEs belong to this completed Hopf algebra
[1, 19,25,26,40,41].

On the other side, for each n, Xn is a finite Feynman diagram which guarantees
the finiteness of the terms Yns. Each Yn could be constructed from Yn−1 by a growing
(not generally uniform) attachment graph sequence.

Thanks to these both sides, we plan to make a sequence of random graphs which
converges to the unlabeled graphon [f tX ] when n goes to infinity.

For each n, let V (Yn, ρn) be a finite subset of the closed interval which contains
|V (tYn)| := |V (tX1)|+ |V (tX2)|+ . . .+ |V (tXn)| (4.7)

nodes in [0, 1] which are selected by projections of the vertices of tYn under a fixed
poset type injective embedding map ρn from tYn in [0, 1].

On the other hand, since X =
∑
n≥0Xn ∈ H exists uniquely, it is possible to

associate a labeled graphon fd with respect to the n-adic metric which belongs to the
class [f tX ].
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Now for each n ≥ 1, make a new random type graph Rn by using the points in
V (Yn, ρn) and the n-adic metric. In other words, for each pair vi, vj ∈ V (Yn, ρn), let
ρ−1
n (vi) ∈ Γki ⊂ Xki and ρ−1

n (vj) ∈ Γkj ⊂ Xkj . The corresponding edge vivj in the
random graph is included by the probability

fd(vi, vj) := d(Γki ,Γkj ) = 2−val(Γki−Γkj ). (4.8)

As the consequence, thanks to Proposition 3.1 and Corollary 4.3, the sequence
(Rn)n≥1 is convergent to the labeled graphon [f tX ] when n tends to infinity.

In terms of the standard graduation factor on Feynman diagrams, the renormaliza-
tion Hopf algebra is of finite type which means that the number of generators in each
order is finite. Therefore this Hopf algebra is capable to encode a formal expansion of
Feynman diagrams which all terms except a finite number in the expansion consider
to be zero. This lack has already been covered by working on the completion of
the renormalization Hopf algebra with respect to the n-adic topology which enables
us to deal with infinite series and polynomials. Proposition 3.2 addresses the new
enriched model Hd�

FG(Φ) of the renormalization Hopf algebra which contains large
Feynman graphs. Moreover, Proposition 4.6 shows us the capability of this new enriched
Hopf algebra for the description of solutions of combinatorial DSEs. The immediate
consequence of this investigation is to obtain a new extended version of the BPHZ
renormalization formalism at the level of large Feynman graphs. In the standard
version we deal with a single graph, decompose it into its primitive components
and then eliminate sub-divergencies from each simple component at the same time
[24,26,38,39,41]. But at this developed version, we enable to work on a large graph
which is the convergent limit of an infinite sequence of Feynman diagrams with respect
to the cut-distance topology.
Corollary 4.7. Let X =

∑
n≥0Xn be a large Feynman graph generated by a given

equation DSE of the form (4.2) in a QFT Φ. Renormalized value and counterterm
associated to X could be computed in terms of its generators under the BPHZ formalism.
Proof. Let φ be the regularized Feynman rules character associated to Φ. Consider the
undeformed character φ ◦ S such that S is the antipode of HFG(Φ) and then deform it
by the minimal subtraction map. Now for each finite Feynman diagram Γ, the BPHZ
renormalization can be summarized by the equations

SφRms(Γ) = −Rms(φ(Γ))−Rms(
∑

γ⊂Γ
SφRms(γ)φ(Γ/γ)), (4.9)

Γ 7−→ SφRms ∗ φ(Γ). (4.10)
It is easy to see that

SφRms ∗ φ(Γ) = R(Γ) + SφRms(Γ) (4.11)

such that the Bogoliubov operation R is given by

R(Γ) = Uzµ(Γ) +
∑

γ⊂Γ
c(γ)Uzµ(Γ/γ) = φ(Γ) +

∑

γ⊂Γ
SφRms(γ)φ(Γ/γ). (4.12)
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The formulas SφRms(Γ) and SφRms ∗ φ(Γ) give us counterterm and renormalized value
related to the Feynman integral U(Γ) [6, 14,15,41].

On the other hand, thanks to Proposition 4.6, we know that

X = lim
n−→∞

Yn (4.13)

with respect to the cut-distance topology. Now the linear property of the character φ
and the antipode and also, the compatibility of the renormalization coproduct with the
enriched metric structure on the Hopf algebra HFG(Φ) (Proposition 3.2 and Corollary
4.4) allow us to compute counterterm and related renormalized value with respect to
the equation DSE in terms of generators of the unique solution X =

∑
n≥0Xn via the

following process.
For the counterterm, we have

SφRms(X) = lim
n−→∞

SφRms(Yn) = limn−→∞

n∑

i=1
SφRms(Xi)

= lim
n−→∞

n∑

i=1

(
−Rms(φ(Xi))−Rms

( ∑

γ⊂Xi
SφRms(γ)φ(Xi/γ)

)) (4.14)

and for the renormalized value, we have

SφRms ∗ φ(X) = lim
n−→∞

SφRms ∗ φ(Yn)

= lim
n−→∞

n∑

i=1
SφRms ∗ φ(Xi).

(4.15)

All the above sequences could be reinterpreted in terms of graphons in terms of
our explained framework. Since the unique solution X for DSE exists, those limits are
convergent with respect to the cut-distance topology. It means that the limits given
by the equations (4.14) and (4.15) are well-defined.

5. FUTURE DIRECTIONS

This research work will open two new general research directions in Mathematics and
Physics. The first direction is to search for possible connections between renormalization
Hopf algebra of graphons and other combinatorial Hopf algebras. The second direction
is to search for some new interpretations of non-perturbative parameters in QFTs with
strong coupling constants in the language of random graphs. Our study is capable
to open some new practical techniques in dealing with non-perturbative parameters
in QFT. For instance, there are many sub-divergencies in the structure of an infinite
formal expansion of Feynman diagrams which contribute to the solution of a given
Dyson–Schwinger equation where we can classify them in terms of some primitive 1PI
Feynman diagrams. On the other hand, theory of graphons provides the notion of
homomorphism density which considers the density of sub-graphs in a big complex
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graph. According to these investigations and thanks to the built methodology in
this article, we will have a new possibility to study the quantity of a particular
class of sub-divergencies in a large Feynman graph. This capability could be useful
whenever we want to achieve some approximations in the computational processes of
non-perturbative parameters in theories with strong coupling constants. It means that
we can ignore those sub-divergencies with the lowest quantities in a large Feynman
graph to obtain some optimal estimations of non-perturbative parameters. In addition,
thanks to Corollary 2.3, we can propose another unexplored project about any possible
representation of Dyson–Schwinger equations of gauge field theories on the basis of
random graphs.

6. APPENDIX A: A PRELIMINARY DISCUSSION ABOUT GRAPHONS

In the first Appendix, we review the basic structure of graph functions under combi-
natorial and topological settings.

A finite graph G can be described as a pair (V (G), E(G)) of finite sets such that
V (G) identifies all vertices in the graph and E(G) determines all edges among vertices
of V (G). It is weighted graph, if it accepts a weight value in [0, 1] for each of its
edges. For arbitrary vertices vi and vj in G, label the corresponding edge vivj with
probability equal to its weight. This gives us a simple random graph RG with respect
to G. For given finite graphs G1, G2, a homomorphism from G1 to G2 is defined as a
map φ with V (G1) as its domain and V (G2) as its image such that it preserves the
edge adjacency. It means that for each edge (v, w) ∈ E(G1), the pair (φ(v), φ(w)) is
an edge in E(G2).

Consider the family of symmetric, Lebesgue measurable functions from [0, 1]2 ⊂ R2

to [0, 1] ⊂ R which is equipped by the almost everywhere equal relation as an equivalent
relation. The resulting class of functions can be seen as some weighted graphs on
the vertex set [0, 1] which are called graph functions or graphons. In a topological
setting, a graphon appears as the limit of a sequence of finite graphs with respect to
the cut-distance metric.

Definition 6.1. For a given finite graph G, the adjacency matrix with respect to G
is a |V (G)| × |V (G)| matrix MG = (mij) such that each array mij shows the number
of edges which exists directly between vi and vj in G.

If the graph has no self-loop, then its adjacency matrix is a symmetric matrix such
that the arrays on its diameter are all zero. There exists a class of finite graphs which
has no self-loop such that between each two vertices of the given graph there exists at
most one edge. They are called simple graphs.

Definition 6.2. A pixel picture with respect to a given labeled finite simple graph G
is a graded square with the area |V (G)|2 such that each small unit square is black if
its corresponding array in the adjacency matrix is 1 and is white if its corresponding
array in the adjacency matrix is 0.
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Definition 6.3. A labeled graphon is a symmetric Lebesgue measurable function from
[0, 1]× [0, 1] ⊂ R2 to [0, 1] ⊂ R. A relabeling on a graphon is described as the result of
applying an invertible transformation to the closed interval [0, 1] which preserves the
chosen measure.

An unlabeled graphon is a graphon up to relabeling. Therefore according to
Definition 6.3, each unlabeled graphon could be described by an equivalence class of
labeled graphons. This class is given by

[lg] := {lgϕ : (x, y) 7−→ lg(ϕ(x), ϕ(y)), ϕ} (6.1)

such that ϕ is an invertible and measure preserving transformation of the closed unit
interval in R. We can work on such equivalence classes to neutralize the appearance of
different labels.

Remark 6.4. Regarding the class (6.1), if we change the vertex-decorations of a given
finite graph G, then we can get a different pixel picture which means that we can
associate various labeled graphons to G. All of these graphons can be encoded by the
unlabeled graphon class [fG] associated to the graph G.

Lemma 6.5. For each given finite simple labeled graph G, the adjacency matrix
determines a unique class of labeled graphons.

Proof. The adjacency matrix of G gives the function

AG(u, v) :=
{

1 u and v are adjacent,
0 otherwise.

Let the vertices of G are decorated by the set {1, 2, . . . , n} and consider the probability
space Ω = (0, 1] which is divided by the partition Iin := ( i−1

n , in ] of sub-intervals. Now
thanks to the adjacency matrix of G define a new function

fG(x, y) := AG(i, j), x ∈ Iin, y ∈ Ijn.

which is a graph function on [0, 1]× [0, 1] such that

fG(x, y) =
{

1 (dnxe, dnye) ∈ E(G),
0 otherwise.

where E(G) is the set of edges of G, dnxe, dnye are the least integer greater than or
equal to the real numbers nx, ny, respectively.

fG is a bounded symmetric measurable function on [0, 1]× [0, 1] which provides
measure preserving transformation of the closed unit interval. As the result, fG is
a labeled graphon for the graph G where thanks to (6.1), the class [fG] can be identified
as the unique class of graph functions which encodes the graph G in terms of its
corresponding adjacency matrix. It is called the unlabeled graphon with respect to
the finite decorated graph G.
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This lemma suggests the existence of a pattern to rebuild a labeled finite graph
uniquely in terms of information derived by its corresponding unlabeled graphon.

On the one hand, pixel pictures, as elementary examples of labeled graphons, could
play the role of a bridge between graph functions and Feynman diagrams. On the other
hand, thanks to Lemma 6.5, we have a natural link between graphs and graphons
which is central in the graph limit theory. These investigations enable us to encode
the combinatorial information of Feynman diagrams via unlabeled graphons.

Set G[0,1] as the space of labeled graphons which contains all bounded symmetric
Lebesgue measurable functions of the form f : [0, 1]2 −→ [0, 1]. Up to the almost
everywhere equal relation on measurable functions, there exists a natural equivalence
relation ∼ on G[0,1]. We say that two graphons are weakly equivalent iff their corre-
sponding unlabeled measurable functions g1, g2 are the same almost everywhere. This
leads us to work on class functions which belong to the quotient space G[0,1]/ ∼.

Set G as the vector space of all bounded symmetric measurable functions of the
form f : [0, 1]2 −→ R. This space includes G[0,1] as a subset. The map ‖ · ‖ given by

‖f‖cut := sup
A,B⊂[0,1]

∣∣∣
∫

A×B

f(x, y)dxdy
∣∣∣

defines a seminorm on G where A,B are Lebesgue measurable subsets of [0, 1]. Invertible
maps which preserve measure produce a group denoted by S[0,1]. This group acts on
G[0,1] by

∀σ ∈ S[0,1] : fσ(x, y) := f(σ(x), σ(y)).

Now by applying this action we can obtain a pseudo-metric structure on G[0,1] which
is formulated by

δ�(g1, g2) := inf
σ∈S[0,1]

∥∥∥g1 − gσ2
∥∥∥

cut
. (6.2)

The infimum parameter in the definition of δ� makes it well-defined on the space
of unlabeled graphons but it is not yet a metric. The pseudo-metric property of δ� on
the space of graphons means that there exists at least one pair of distinct unlabeled
graphons which are not identified one by one by δ�. This lack could be covered by
working on the quotient space of unlabeled graphons with respect to the equivalence
relation on these graphons under the weakly equivalent relation which says that

g1 ∼ g2 ⇐⇒ δ�(g1, g2) = 0. (6.3)

The distance between two classes [g1], [g2] (as unlabeled graphons) is determined by

inf
ϕ,ψ

sup
A,B

∣∣∣∣∣

∫

A×B

g1(ϕ(x), ϕ(y))− g2(ψ(x), ψ(y))dxdy
∣∣∣∣∣. (6.4)

such that the infimum is taken over all different relabeling ϕ of g1 and ψ of g2, and
the supremum is taken over all Lebesgue measurable subsets A,B of the unit closed
interval [0, 1].
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δ� is a metric on the space of all unlabeled graphons up to the weak isomorphism.
The topology generated by this metric is called cut-distance topology where at the
end of the day, we can build a complete compact metric structure on the quotient
space G[0,1]/ ∼ [16, 17,22,27].

A graphon g and a finite subset S ⊂ [0, 1] of n points which are chosen uniformly
and independently from [0, 1] address a weighted graph HS,g. This new graph has
|S| = n vertices such that for each arbitrary vertices si, sj ∈ S, the corresponding edge
sisj has weight g(s1, s2). The random graph with respect to the weighted graph HS,g

is denoted by GH(n, g).

Lemma 6.6. For a given graphon g and for every n ≥ 1, let Rn be a random graph
GH(n, g) with respect to the graphon g and selected finite subset Sn of [0, 1]. Then,
with probability one and with respect to the cut-distance topology, the sequence (Rn)n≥1
converges to g [16, 17,27,28].

7. APPENDIX B: UNIQUENESS

In the second Appendix, we concern the uniqueness property of convergent limits of
sequences of decorated rooted tress which leads us to identify this uniqueness for the
level of Feynman diagrams.

Lemma 7.1. Up to unlabeled graphons and weakly equivalent relation, the limit of
a convergent sequence of decorated rooted trees is unique.

Proof. Let {tn}n≥1 be a sequence of classes of labeled rooted trees which converges
to unlabeled graphons [f t] and [fs] with respect to the topology induced by the
cut-distance metric (6.4). Thanks to Corollary 2.2, we have

∀ε > 0 ∃Nt ∈ N, ∀n > Nt =⇒ δ�([f tn ], [f t]) < ε/2, (7.1)

∀ε > 0 ∃Ns ∈ N, ∀n > Ns =⇒ δ�([f tn ], [fs]) < ε/2. (7.2)

For each n > max {Nt, Ns}, we plan to show that

δ�([f t], [fs]) ≤ δ�([f t], [f tn ]) + δ�([f tn ], [fs]) (7.3)

such that thanks to (7.1) and (7.2), we will obtain δ�([f t], [fs]) < ε. Therefore
δ�([f t], [fs]) = 0 where thanks to the the equivalence relation (6.3), we will have
[f t] = [fs].

Since graph functions are Lebesgue measurable on [0, 1] × [0, 1], it is enough to
prove (7.3) for the level of step functions and then applying the approximation method
enables us to extend the result to general graph functions.

Let f t, fs, f tn are step functions with corresponding partitions

Ωt :=
I⋃

i=1
Ai, Ωtn :=

J⋃

j=1
Bj , Ωs :=

K⋃

k=1
Ck,
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such that Ai, Bj , Ck are non-zero Lebesgue measurable subsets of the closed interval
[0, 1]. Thanks to Lemma 6.3 in [22], we have

‖f t,πt − f tn,πtn ‖cut < δ�(f t, f tn) + ε,

‖f tn,πtn − fs,πs‖cut < δ�(f tn , fs) + ε

such that πl is the projection onto Ωl. Thanks to the Lebesgue measure on Ωl, define
a new product measure µ on Ωt ×Ωtn ×Ωs such that for each subset E, it is given by

µ(E) :=
∑

i,j,k

mt,tn(Ai ×Bj)mtn,s(Bj × Ck)
mtn(Bj)

× mt ×mtn ×ms(E ∩ (Ai ×Bj × Ck))
mt(Ai)mtn(Bj)ms(Ck) ,

where mt,mtn ,ms are Lebesgue measure on [0, 1] and mt,tn ,mtn,s are Lebesgue
measure on [0, 1]× [0, 1]. It can be shown that the projections

πl : (Ωt × Ωtn × Ωs, µ) −→ (Ωl,ml)

are measure preserving. In addition, the projections πttn , πtns map the probability
measure µ to new measures ρttn on Ωt × Ωtn and ρtns on Ωtn × Ωs such that thanks
to Lemma 6.3 in [22] we will have

‖f t,πt − f tn,πtn ‖cut,Ωt×Ωtn ,ρttn = ‖f t,πt − f tn,πtn ‖cut,Ωt×Ωtn ,mt,tn ,

‖f t,πt − f tn,πtn ‖cut,Ωt×Ωtn×Ωs,µ = ‖f t,πt − f tn,πtn ‖cut,Ωt×Ωtn ,ρttn .

As the result, we will have

‖f t,πt − f tn,πtn ‖cut,µ < δ�(f t, f tn) + ε,

‖f tn,πtn − fs,πs‖cut,µ < δ�(f tn , fs) + ε.

Now apply the triangle inequality for ‖ · ‖cut,µ to obtain

δ�(f t, fs) ≤ ‖f t,πt − fs,πs‖cut,µ

≤ ‖f t,πt − f tn,πtn ‖cut,µ + ‖f tn,πtn − fs,πs‖cut,µ

< δ�(f t, f tn) + δ�(f tn , fs) + 2ε,

where ε > 0 is arbitrary which means that we have obtained (7.3) for the level of step
functions.



Graphons and renormalization of large Feynman diagrams 453

Lemma 7.2. Up to unlabeled graphons and weakly equivalent relation, the limit of
a convergent sequence of Feynman diagrams is unique.

Proof. It is a direct result of the second fundamental definition (Corollary 4.1) and
Lemma 7.1.
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