PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Experimental Study and Numerical Simulation of Explosive Welding of Nickel Foil with Q235 Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to study the interface microstructure and formation mechanism of nickel (Ni) foil/steel Q235 (Ni/Q235) explosive composite plate, Ni/Q235 laminated composite was successfully prepared by explosive welding technology using Ni foil, Q235 steel plate as substrate and composite plate. respectively. The microstructure of the bonding interface was analyzed by SEM and EDS. The mechanical properties of the interface were tested by tensile tests. The explosive welding process was simulated by the smooth particle fluid dynamics (Smoothed Particle Hydrodynamics, SPH) numerical simulation method. The results showed that the interface of the Ni/Q235 explosive composite plate had regular wave-like bonding, and there were no defects, such as unbonding and local melting at the bonding interface. The tensile strength of the tensile specimen reached 623 MPa, and the Ni layer and the Q235 layer on either side of the tensile specimen fracture exhibited a mainly plastic fracture. The numerical simulation results were in good agreement with the experimental results, which can provide theoretical support for the study of the explosive welding preparation of Ni/Q235 double-layer composite plate and the bonding mechanism of its connection interface.
Rocznik
Strony
241--259
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
  • School of Chemical Engineering, Anhui University of Science and Technology, Anhui, China
autor
  • School of Chemical Engineering, Anhui University of Science and Technology, Anhui, China
autor
  • School of Chemical Engineering, Anhui University of Science and Technology, Anhui, China
autor
  • School of Chemical Engineering, Anhui University of Science and Technology, Anhui, China
Bibliografia
  • [1] Borchers, C.; Lenz, M.; Deutges, M.; Klein, H.; Gärtner, F.; Hammerschmidt, M; Kreye, H. Microstructure and Mechanical Properties of Medium-Carbon Steel Bonded on Low-Carbon Steel by Explosive Welding. Mater. Des. 2016, 89(5): 369-376; https://doi.org/10.1016/j.matdes.2015.09.164.
  • [2] Kahraman, N.; Gülenç, B. Microstructural and Mechanical Properties of Cu-Ti Plates Bonded through Explosive Welding Process. J. Mater. Process. Technol. 2005, 169(1): 67-71; https://doi.org/10.1016/j.jmatprotec.2005.02.264.
  • [3] Akbari Mousavi, S.A.A.; Farhadi Sartangi, P.F. Experimental Investigation of Explosive Welding of cp-Titanium/AISI 304 Stainless Steel. Mater. Des. 2009, 30(3): 459-468; https://doi.org/10.1016/j.matdes.2008.06.016.
  • [4] Zheng, Y. Principle and Application of Explosive Welding and Explosive Composite Materials. Welding Technology 2007, 36(4); ISBN 9787811055092.
  • [5] Findik, F. Recent Developments in Explosive Welding. Mater. Des. 2011, 32(3): 1081-1093; https://doi.org/10.1016/j.matdes.2010.10.017.
  • [6] Durrani, T. A Study of Electroless Nickel-Boron Coating Process. J.Chem. Soc. Pak. 2011, 30(6): 536.
  • [7] Legkaya, D.A.; Solov’eva, N.D.; Yakovlev, A.V. Physicomechanical Properties of Nickel Coating Deposited from Sulfate Nickel Plating Electrolyte Using Preliminary Underpotential Deposition. Russ. J. Appl. Chem. 2017, 90(9): 1454-1458; https://doi.org/10.1134/S1070427217090129.
  • [8] Lysak, V.I.; Kuzmin, S.V. Energy Balance During Explosive Welding. J. Mater. Process. Technol. 2015, 222: 356-364; https://doi.org/10.1016/j.jmatprotec.2015.03.024.
  • [9] Hokamoto, K.; Nakata, K.; Mori, A.; Tsuda, S.; Tsumura, T.; Inoue, A. Dissimilar Material Welding of Rapidly Solidified Foil and Stainless Steel Plate Using Underwater Explosive Welding Technique. J.Alloys Compd. 2009, 472(1-2): 507-511; https://doi.org/10.1016/j.jallcom.2008.05.002.
  • [10] Zhou, Q.; Feng, J.; Chen, P. Numerical and Experimental Studies on the Explosive Welding of Tungsten Foil to Copper. Materials 2017, 10(9): 984; https://doi.org/10.3390/ma10090984.
  • [11] Liu, W.D.; Liu, K.X.; Chen, Q.Y.; Wang, J.T.; Li, X.J. Metallic Glass Coating on Metals Plate by Adjusted Explosive Welding Technique. Appl. Surf. Sci. 2009, 255(23): 9343-9347; https://doi.org/10.1016/j.apsusc.2009.07.033.
  • [12] Yang, M.; Ma, H.; Shen, Z.; Huang, Z.; Tian, Q.; Tian, J. Dissimilar Material Welding of Tantalum Foil and Q235 Steel Plate Using Improved Explosive Welding Technique. Mater. Des. 2020, 186: paper 108348; https://doi.org/10.1016/j.matdes.2019.108348.
  • [13] Wang, X.; Zheng, Y.; Liu, H. Numerical Study of the Mechanism of Explosive/Impact Welding Using Smoothed Particle Hydrodynamics Method. Mater. Des. 2012, 35: 210-219; https://doi.org/10.1016/j.matdes.2011.09.047.
  • [14] Miao, G.; Ma, H.; Shen, Z. Honeycomb Structural Explosive and Its Application. J. Energ. Mater. 2014, 22(5): 693-697.
  • [15] Bahadur Sherpa, B.; Dinesh Kumar, P.; Upadhyay, A.; Kumar, S.; Agarwal, A.; Tyagi, S. Low Velocity of Detonation Explosive Welding (LVEW) Process for Metal Joining. Propellants Explos. Pyrotech. 2020, 45(10): 1554-1565; https://doi.org/10.1002/prep.202000019.
  • [16] Hoseini Athar, M.M.; Tolaminejad, B. Weldability Window and the Effect of Interface Morphology on the Properties of Al/Cu/Al Laminated Composites Fabricated by Explosive Welding. Mater. Des. 2015, 86: 516-525; https://doi.org/10.1016/j.matdes.2015.07.114.
  • [17] Zhao, H. Characterization of the Microstructure and Bonding Properties of Zirconium-Carbon Steel Clad Materials by Explosive Welding. Scanning 2020, 2020: paper 8881898; https://doi.org/10.1155/2020/8881898.
  • [18] Wang, S.; Han, X. Investigation on Microstructure and Mechanical Properties of TA10-Q245R Composite Plate Formed by Explosive Welding. J. Mater. Eng. Perform. 2019, 28(7): 4241-4251; https://doi.org/10.1007/s11665-019-04193-x.
  • [19] National standard GB/T228-200 Room Temperature Tensile Test Method for Metal Materials. (in Chinese) China.
  • [20] Liu, L.; Jia, Y.-F.; Xuan, F.-Z. Gradient Effect in the Waved Interfacial Layer of 304L/533B Bimetallic Plates Induced by Explosive Welding. Mater. Sci. Eng. A 2017, 704: 493-502; https://doi.org/10.1016/j.msea.2017.08.012.
  • [21] Zhang, Z.L.; Liu, M.B. Numerical Studies on Explosive Welding with ANFO by Using a Density Adaptive SPH Method. J. Manuf. Process. 2019, 41: 208-220; https://doi.org/10.1016/j.jmapro.2019.03.039.
  • [22] Peng, J.; Hu, C.; Li, Y.; Zhang, L.; Jing, F. Determination of Parameters of SteinbergGuinan Constitutive Model with Shock Wave Experiments. Int. J. Mod. Phys. B 2008, 22(09n11): 1111-1116; https://doi.org/10.1142/S0217979208046396.
  • [23] Bataev, I.A.; Tanaka, S.; Zhou, Q.; Lazurenko, D.V.; Jorge Junior, A.M.; Bataev, A.A.; Hokamoto, K.; Mori, A.; Chen, P. Towards Better Understanding of Explosive Welding by Combination of Numerical Simulation and Experimental Study. Mater. Des. 2019, 169: 107649; https://doi.org/10.1016/j.matdes.2019.107649.
  • [24] Yuan, X.; Wang, W.; Cao, X.; Zhang, T.; Xie, R.; Liu, R. Numerical Study on the Interfacial Behavior of Mg/Al Plate in Explosive/Impact Welding. Sci. Eng. Compos. Mater. 2017, 24(4): 581-590; https://doi.org/10.1515/secm-2015-0316.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1659d9d9-ec5f-46f3-b8b7-f6e3ebd3042a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.