PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Investigation on Indicated Pressure and Heat Release for Direct Hydrogen Injection in a Dual Fuel Diesel Engine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the research results for a diesel and hydrogen fueled engine. The research object is a four-cylinder, four-stroke ADCR engine with a displacement of 2,636 cm3. In the experiments, glow plugs were replaced with compressed hydrogen injectors and a special adapter. Hydrogen was supplied directly into a combustion chamber using a test injector. A hydrogen dose in the tests was changed at selected test points and ranged from 0 to 160 dm3/min. The research were conducted at 1,500 rpm. A hydrogen injection start angle and maximum hydrogen dose were specified from the preliminary experiments. The following parameters were analyzed: indicated mean effective pressure, maximum pressure, crank angle of maximum cylinder pressure occurrence and heat release. The obtained results were statistically analyzed. The conducted analysis focused on determining whether there are significant differences between early and late injection and how these changes affect the measured parameters.
Twórcy
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • John Paul II University of Applied Sciences in Biała Podlaska, Faculty of Technical Sciences, ul. Sidorska 95/97, 21-500 Biała Podlaska, Poland
  • Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Sahoo B.B., Sahoo N., Saha U.K. Effect of engine parameters and type of gaseous fuel on the performance of dual-fuel gas diesel engines - A critical review. Renew Sustain Energy Rev. 2009; 13(6–7): 1151–1184.
  • 2. Masood M., Ishrat M.M. Computer simulation of hydrogen-diesel dual fuel exhaust gas emissions with experimental verification. Fuel. 2008; 87: 1372–1378.
  • 3. Boretti A. Advances in hydrogen compression ignition internal combustion engines. Int J Hydrogen Energy. 2011; 36(19): 12601–12606.
  • 4. Lilik G.K., Zhang H., Herreros J.M., Haworth D.C., Boehman A.L. Hydrogen assisted diesel combustion. Int J Hydrogen Energy. 2010; 35: 4382–4398.
  • 5. Bayramoğlu K., Yılmaz S. Emission and performance estimation in hydrogen injection strategies on diesel engines. Int J Hydrogen Energy. 2021; 46(57): 29732–29744.
  • 6. Babayev R., Andersson A., Serra Dalmau A., Im H.G., Johansson B. Computational comparison of the conventional diesel and hydrogen direct-injection compression-ignition combustion engines. Fuel. 2022; 307: 121909.
  • 7. Liu X., Srna A., Yip H.L., Kook S., Chan Q.N., Hawkes E.R. Performance and emissions of hydrogen-diesel dual direct injection (H2DDI) in a single-cylinder compression-ignition engine. Int J Hydrogen Energy. 2021; 46(1): 1302–1314.
  • 8. Jamrozik A., Grab-Rogaliński K., Tutak W. Hydrogen effects on combustion stability, performance and emission of diesel engine. Int J Hydrogen Energy. 2020; 45(38): 19936–19947.
  • 9. Dowd A.M., Hobman E. Mobilizing citizens for a low and clean energy future. Curr Opin Environ Sustain. 2013; 5(2): 191–196.
  • 10. Siadkowska K. Experimental Study of Particulate Emissions for Direct Hydrogen Injection in a Dual Fuel Diesel Engine. SAE Tech Pap. 2020; 2020-01-2197.
  • 11. Osipowicz T., Abramek K., Barta D., Droździel P., Lisowski M. Analysis of Possibilities To ImproveEnvironmental Operating Parameters of Modern Compression – Ignition Engines. Adv Sci Technol Res J. 2018; 12(2): 206– 213.
  • 12. Karagöz Y., Sandalci T., Yüksek L., Dalkiliç A.S., Wongwises S. Effect of hydrogen-diesel dual-fuel usage on performance, emissions and diesel combustion in diesel engines. Adv Mech Eng. 2016; 8(8): 1–13.
  • 13. Hernández J.J., Salvador J.B., Cova-Bonillo A. Autoignition of diesel-like fuels under dual operation with H2. Adv Mech Eng. 2019; 11(6).
  • 14. Tulwin T., Sochaczewski R. The dual-fuel CFD combustion model with direct and indirect CNG injection. ITM Web Conf. 2017; 15: 07016.
  • 15. Pietrykowski K., Grabowski Ł., Sochaczewski R, Wendeker M. The CFD model of the mixture formation in the Diesel dual-fuel engine. Combust Engines. 2013; 154(3): 476–482.
  • 16. Bialy M., Wendeker M., Magryta P., Czyz Z., Sochaczewski R. CFD Model of the Mixture Formation Process of the CNG Direct Injection Engine. SAE Tech Pap. 2014; 2014-01-2575.
  • 17. Gomes Antunes J.M., Mikalsen R., Roskilly A.P. An experimental study of a direct injection compression ignition hydrogen engine. Int J Hydrogen Energy. 2009; 34: 6516–22.
  • 18. Tsujimura T., Mikami S., Achiha N., Tokunaga Y., Senda J., Fujimoto H. A Study of Direct Injection Diesel Engine Fueled with Hydrogen. SAE Tech Pap. 2003; 2003-01-0761.
  • 19. Andreassi L., Ubertini S., Allocca L. Experimental and numerical analysis of high pressure diesel spray-wall interaction. Int J Multiph Flow. 2007; 33: 742–65.
  • 20. Idzior M., Stobnicki P., Pielecha I., Czajka J. Research and analysis of the influence of the injection pressure on spraying fuel in the chamber about the fixed volume. Combust Engines. 2013; 154(3): 811–819.
  • 21. Desantes J.M., García-Oliver J.M., Xuan T., Vera-Tudela-Fajardo W. A study on tip penetration velocity and radial expansion of reacting diesel sprays with different fuels. Fuel. 2017; 207: 323–335.
  • 22. Li F., Yi B., Fu W., Song L., Liu T., Hu H., et al. Experimental study on spray characteristics of longchain alcohol-diesel fuels in a constant volume chamber. J Energy Inst. 2017; c: 1–14.
  • 23. Desantes J.M., Pastor J.V., García-Oliver J.M., Briceño F.J. An experimental analysis on the evolution of the transient tip penetration in reacting Diesel sprays. Combust Flame. 2014; 161: 2137–2150.
  • 24. Hoon C., Reitz R.D. CFD simulations of diesel spray tip penetration with multiple injections and with engine compression ratios up to 100:1. Fuel. 2013; 111: 289–297.
  • 25. Marcic S., Marcic M., Wensing M., Vogel T., Praunseis Z. A simplified model for a diesel spray. Fuel. 2018; 222: 485–495.
  • 26. Kafar I., Merkisz J., Piaseczny L. Model rozpylania paliwa w średnioobrotowym silniku okrętowym i jego badania symulacyjne. Silniki spalinowe. 2006; 126(3): 63–76.
  • 27. Stobnicki P. Badawcza analiza wtrysku paliwa w aspekcie właściwości ekologicznych silnika o zapłonie samoczynnym. Politechnika Poznańska; 2013.
  • 28. Orzechowski Z., Prywer J. Rozpylanie cieczy. Warszawa: Wydawnictwa Naukowo-Techniczne; 1991.
  • 29. Bocheński C., Jankowski A., Sandel A., Siemińska-Jankowska B. Investigation of the Fuel Spray Atomization Spectrum in Common-Rail System for Diesel Engines. J KONES Intern Combust Engines. 2002; 1–2: 311–22.
  • 30. Balawender K., Kuszewski H., Lejda K., Lew K. Badania wizualizacyjne jako metoda oceny parametrów wtrysku paliwa do silników ZS. Autobusy – Tech Eksploat Syst Transp. 2016; 6: 761–765.
  • 31. Payri R., García-Oliver J.M., Xuan T., Bardi M. A study on diesel spray tip penetration and radial expansion under reacting conditions. Appl Therm Eng. 2015; 90: 619–29.
  • 32. Jakliński P. Studium wpływu dodatku wodoru na efektywność pracy silnika spalinowego. 2017.
  • 33. Babayev R., Andersson A., Serra Dalmau A., Im H.G., Johansson B. Computational optimization of a hydrogen direct-injection compression-ignition engine for jet mixing dominated nonpremixed combustion. Int J Engine Res. 2021; Dec 15.
  • 34. European Commission. HyICE Optimization of the Hydrogen. European Commission; 2007.
  • 35. European Commission. Summary of an Integrated Project in the 6th Framework Programme of the European Commission. HyICE Optimization of the Hydrogen Internal Combustion Engine. European Commission, 2007.
  • 36. Institut für Kraftfahrzeuge. Hydrogen Internal Combustion Engine. RWTH Aachen University; 2017.
  • 37. European Commission. European Hydrogen & Fuel Cell Technology Platform. Strategic Research Agenda. European Commission; 2005.
  • 38. Bąkowski A., Radziszewski L. Analiza wybranychdeskryptorów sygnałów z silnika spalinowego z wykorzystaniem programu R. Kielce; 2015.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16591279-4d57-4db8-8629-dbb715d69e6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.