PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modelling of the low-pressure gas injector operation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In recent years, there has been a growing interest in alternative sources of power supply for internal combustion engines. Lique-fied petroleum gas injection systems are among the most popular. It becomes necessary to know mathematical descriptions of the opera-tion of individual components. The article presents a mathematical model that describes the operation of the low-pressure gas injector. Valtek plunger injector was chosen as the test object. The mathematical description includes three parts, i.e. electric, mechanical and pneumatic. The electrical part describes the generation of electromagnetic force by a circuit with a coil, in the mechanical equilibrium equa-tion of forces acting on the plunger, and in the pneumatic part the air pressure on the plunger. The calculations were performed in the Matlab/Simulink environment, creating current waveforms, acting forces and plunger displacement. Correctness of mathematical descrip-tion and determined in the course of opening and closing time calculations were related to the values declared by the manufacturer, show-ing differences below 3%. The presented mathematical model can be modified for other injector design solutions.
Rocznik
Strony
29--35
Opis fizyczny
Bibliogr. 76 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Białystok, Poland
  • Faculty of Mechanical Engineering, Bialystok University of Technology, ul. Wiejska 45C, 15-351 Białystok, Poland
Bibliografia
  • 1. Bali E., Erzan Topcu E. (2018), Design of on-off type solenoid valve for electropneumatic brake system and investigation of its statistics characteristics, International Journal of Advances on Automotive and Technology, 2(3): 175–184.
  • 2. Bensetti M., Bihan Y.L., Marchand C. (2006), Development of an hybrid 3D FEM for the modeling of micro-coil sensors and actuators, Sensors and Actuators A: Physical, 129(1): 207–211.
  • 3. Bielaczyc P., Woodburn J. (2018), Trends in automotive emissions legislation: impact on LD engine development, fuels, lubricants, and test methods - a global view, with a focus on WLTP and RDE regulations - Summary of the 6th International Exhaust Emissions Symposium (IEES), Combustion Engines, 174(3): 56–65
  • 4. Borawski A. (2015), Modification of a fourth generation LPG installation improving the power supply to a spark ignition engine, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 17(1): 1–6.
  • 5. Borawski A. (2015a), Simulation studies of LPG injector used in 4th generation installations, Combustion Engines, 160(1): 49–55.
  • 6. Borawski A. (2018). Simulation Study of the Process of Friction in the Working Elements of a Car Braking System at Different Degrees of Wear. Acta Mechanica et Automatica, 12(3): 221–226.
  • 7. Borawski A. (2019), Common methods in analysing the tribological properties of brake pads and discs - a review, Acta Mechanica et Automatica, 13(3): 189–199.
  • 8. Brumercik F.; Lukac M.; Caban J. Krzysiak Z.; Glowacz A. (2020), Comparison of selected parameters of a planetary gearbox with involute and convex–concave teeth flank profiles, Applied Science, 10: 1417.
  • 9. Cao Y., Teng W., Zhang H. (2007), Dynamic modeling and hardware-in-the-loop simulation testing for LPG engine, Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, 2093–2098.
  • 10. Cheng Q., Zhang Z.-D., Guo H., Xie N.-L. (2015), Electro-magnetic-thermal coupling of GDI injector, Journal of Jilin University (Engineering and Technology Edition), 45(3): 806–813
  • 11. Cheng Q., Zhang Z-D., Guo H., Xie N-L. (2014), Simulation and analysis on electro-magnetic-thermal coupling of solenoid GDI injector, International Journal of Applied Electromagnetics and Mechanics, 46(4): 775–792.
  • 12. Cheung N.C., Lim K.W., Rahman M. F. (1993), Modelling a linear and limited travel solenoid, Proceedings of IECON '93 - 19th Annual Conference of IEEE Industrial Electronics, 3: 1567–1572.
  • 13. Chu L., Hou Y., Liu M., Li J., Gao Y., Ehsani M. (2007), Study on the dynamic characteristics of pneumatic ABS solenoid valve for commercial Vehicle, 2007 IEEE Vehicle Power and Propulsion Conference, 641–644.
  • Dariusz Szpica, Michał Kusznier DOI 10.2478/ama-2020-0005 Modelling of the Low-Pressure Gas Injector Operation
  • 14. Cvetkovic D, Cosic I., Subic A. (2008), Improved performance of the electromagnetic fuel injector solenoid actuator using a modelling approach, International Journal of Applied Electromagnetics and Mechanics, 27: 251–273.
  • 15. Czarnigowski J. (2012), Teoretyczno-empiryczne studium modelowania impulsowego wtryskiwacza gazu, Wydawnictwo Politechniki Lubelskiej, Lublin.
  • 16. Czarnigowski J., Jaklinski P., Wendeker M., Pietrykowski K., Gabowski Ł. (2009), The analyses of the phenomena inside a CNG flap-valve injector during gas flow. Combustion Engines, 1(136): 10–18.
  • 17. Czarnigowski J., Wendeker M., Jakliński P., Rola M., Grabowski Ł., Pietrykowski K. (2007), CFD model of fuel rail for LPG systems, JSAE/SAE International Fuels & Lubricants Meeting, 2007-01-2053.
  • 18. Demarchi A., Farçoni L., Pinto A., Lang R., Romero R., Silva I. (2018), Modelling a solenoid’s valve movement, In: Akiyama H., Obst O., Sammut C., Tonidandel F. (eds) RoboCup 2017: Robot World Cup XXI. RoboCup 2017. Lecture Notes in Computer Science, Cham: Springer, 11175.
  • 19. Dimitrova Z., Maréchal F. (2015), Gasoline hybrid pneumatic engine for efficient vehicle powertrain hybridization, Applied Energy, 151: 168–177.
  • 20. Dongiovanni C., Coppo M. (2010), Accurate Modelling of an Injector for Common Rail Systems. In book: Siano D. Fuel Injection, London: IntechOpen Limited, 6: 95–119.
  • 21. Duk M., Czarnigowski J. (2001), The method for indirect identification gas injector opening delay time, Przeglad Elektrotechniczny, 88(10b): 59–63.
  • 22. Grigor’ev M.A., Naumovich N.I., Belousov E.V. (2015), A traction electric drive for electric cars, Russian Electrical Engineering, 86(12): 731–734.
  • 23. Haiping Y., Xianyi Q. (2010), The calculation of main parameters of the gasoline engine fuel injection system, Proceeding of the International Conference on Computer Application and System Modeling (ICCASM), V13–635.
  • 24. Hung N.B., Lim O.T. (2019), Improvement of electromagnetic force and dynamic response of a solenoid injector based on the effects of key parameters, International Journal of Automotive Technology, 20: 949-960.
  • 25. Jeuland N., Montagne X., Duret P. (2004), New HCCI/CAI combustion process development: Methodology for determination of relevant fuel parameters, Oil & Gas Science and Technology, 59(6): 571–579.
  • 26. Kamiński Z. (2013), Experimental and numerical studies of mechanical subsystem for simulation of agricultural trailer air braking systems, International Journal of Heavy Vehicle System, 20(4): 289–311.
  • 27. Kamiński Z. (2014), Mathematical modelling of the trailer brake control valve for simulation of the air brake system of farm tractors equipped with hydraulically actuated brakes, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 16(4): 637–643.
  • 28. Leduc L., Dubar B., Ranini A., Monnier G. (2003), Downsizing of gasoline engine: an efficient way to reduce CO2 emissions. Oil & Gas Science Technology, 58(1): 115–127.
  • 29. Li P.X., Su M., Zhang D.B. (2017), Response characteristic of high-speed on/off valve with double voltage driving circuit, IOP Conference Series: Materials Science and Engineering, 220: 012028.
  • 30. Lim K.W., Cheung N.C., Kahman M.F. (1994), Proportional control of a solenoid actuator, Proceedings of IECON'94 - 20th Annual Conference of IEEE Industrial Electronics, 2045–2050.
  • 31. Liu Y.-F., Dai, Z.-K., Xu X.-Y., Tian L. (2011), Multi-domain modeling and simulation of proportional solenoid valve, Journal of Central South University Technology, 18: 1589–1594.
  • 32. Liu Z., Ouyang G. (2009), Numerical analysis of common rail electro-injector for diesel engine, Proceedings of the International 2009 Conference on Mechatronics and Automation (IEEE), 1683–1688.
  • 33. Lu F., Jensen D. (2003), Potential viability of a fast-acting micro-solenoid valve for pulsed detonation fuel injection, 41st Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, 2003-0888.
  • 34. Lunge, S.P., Kurode S.R. (2013), Proportional actuator from on off solenoid valve using sliding modes, Proceedings of the 1st International and 16th National Conference on Machines and Mechanisms (iNaCoMM2013), 1020–1027.
  • 35. Marčič S., Marčič M., Praunseis Z. (2015), Mathematical Model for the Injector of a Common Rail Fuel-Injection System. Engineering, 7: 307–321.
  • 36. Marczuk A., Caban J., Aleshkin A.V., Savinykh P.A., Isupov A.Y., Ivanov I.I. (2019), Modeling and simulation of particle motion in the operation area of a centrifugal rotary chopper machine, Sustainability, 11(18): 1–15.
  • 37. Matkowić K., Jelović M., Jurić J., Konyha Z., Gračanin D. (2005), Interactive visual analysis and exploration of injection system simulations, Proceedings of the International Conference on Vizualization (VIS 05. IEEE), 391–398.
  • 38. Mehlfeldt D., Weckenmann H., Stöhr G. (2008), Modeling of piezoelectrically actuated fuel injectors, Mechatronics, 18: 264–272.
  • 39. Mieczkowski G. (2019), Criterion for crack initiation from notch located at the interface of bi-material structure, Eksploatacja i Niezawodnosc – Maintenance and Reliability, 21 (2): 301–310.
  • 40. Mieczkowski G. (2019a), Static electromechanical characteristics of piezoelectric converters with various thickness and length of piezoelectric layers, Acta Mechanica et Automatica, 13(1): 30–36.
  • 41. Mieczkowski G., Borawski A., Szpica D. (2020), Static electromechanical characteristic of a three-layer circular piezoelectric transducer, Sensors, 20, 222.
  • 42. Mieczkowski G., Molski K., Seweryn A. (2007), Finite-element modeling of stresses and displacements near the tips of pointed inclusions, Materials Science, 43(2): 183–194.
  • 43. Mikulski M., Balakrishnan P.R., Doosje E., Bekdemir C. (2018), Variable valve actuation strategies for better efficiency load range and thermal management in an RCCI engine, SAE Technical Papers, 2018-01-0254.
  • 44. Mikulski M., Wierzbicki S., Piętak A. (2015), Numerical studies on controlling gaseous fuel combustion by managing the combustion process of diesel pilot dose in a dual-fuel engine, Chemical and Process Engineering, 36(2): 225–238.
  • 45. Li M.H., Jiang F. (2010), Simulation research on fuel injection system of 16V265H Dielsel engine introduced from U.S., Proceedings of the International Conference on E-Product E-Service and E-Entertainment (ICEEE), 4796–4799.
  • 46. Morselli R., Corti E., Rizzoni G. (2002), Energy based model of a common rail injector, Proceeding of the International Conference on Control Applications (IEEE), 2: 1195–1200.
  • 47. Mustafa K.F., Gitano-Briggs H.W. (2009), Liquefied petroleum gas (LPG) as an alternative fuel in spark ignition engine: Performance and emission characteristics. Proceedings of the International Conference Energy and Environment (ICEE), 189–194.
  • 48. Onishi S., Jo S.H., Shoda K., Jo P.D., Kato S. (1979), Active thermo-atmosphere combustion (A.T.A.C.) - A new combustion process for internal combustion engines, SAE Paper, 790501.
  • 49. Pacurar C., Topa V., Munteanu C., Racasan A., Hebedean C., Oglejan R., Vlad G. (2015), Solenoid actuator parametric analysis and numerical modeling, Acta Electrotehnica, 56(3): 246–251.
  • 50. Passarini L.C., Nakajima P.R. (2003), Development of a high-speed solenoid valve: an investigation of the importance of the armature mass on the dynamic response, Journal of the Brazilian Society of Mechanical Sciences and Engineering, XXV(4): 329–335.
  • 51. Passarini L.C., Pinotti JR, M. (2003), A new model for fast-acting electromagnetic fuel injector analysis and design, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 25(1): 95–106.
  • 52. Plavec E., Ladisic I., Vidovic M. (2019), The impact of coil winding angle on the force of DC solenoid electromagnetic actuator, Advanc-es in Electrical & Electronic Engineering, 17(3): 244–250.
  • 53. Pogulyaev Y.D., Baitimerov R., Rozhdestvensky Y. (2015), Detailed dynamic modeling of common rail piezo injector, Procedia Engineering, 129: 93–98.
  • 54. Pulawski G., Szpica D. (2015), The modelling of operation of the compression ignition engine powered with diesel fuel with LPG admixture, Mechanika, 21(6): 501–506.
  • 55. Rahman M. F., Cheung N. C., Lim K. W. (1996a), Converting a switching solenoid to a proportional actuator, IEEJ Transactions on Electrical and Electronic Engineering, I-16(5): 531–537.
  • 56. Rahman M. F., Cheung N. C., Lim K. W. (1996b), Modeling of a nonlinear solenoid toward the development of a proportional actuator, Procceedings of the 5th International Conferences Modeling and Simulation of Electrical Machines Convertors and Systems ELECTRIMACS'96, 2: 695–670.
  • 57. Raslavičius L., Keršys A., Makaras R. (2017), Management of hybrid powertrain dynamics and energy consumption for 2WD, 4WD, and HMMWV vehicles, Renewable and Sustainable Energy Reviews, 68(1): 380–396.
  • 58. Raslavičius L., Keršys A., Mockus S., Keršiene N., Starevičius M. (2014), Liquefied petroleum gas (LPG) as a medium-term option in the transition to sustainable fuels and transport, Renewable & Sustainable Energy Reviews, 32: 513–525.
  • 59. Ristovski Z.D., Jayaratne E.R., Morawska L., Ayoko G.A., Lim M. (2005), Particle and carbon dioxide emissions from passenger vehicles operating on unleaded petrol and LPG fuel, Science of the Total Environment, 345: 93–98.
  • 60. Shamdani, A.H., Shamekhi, A.H., Basharhagh, M.Z. (2006). Modeling and Simulation of a Diesel Engine Common Rail Injector in Matlab/Simulink, 14th Annual (International) Mechanical Engineering Conference, 7.
  • 61. Simon M. (2017), Pneumatic vehicle, research and design, Procedia Engineering, 181: 200–205.
  • 62. Szpica D. (2016), Modeling of current limitation through the PWM signal in LPG injectors, Proceedings of 20th International Scientific Conference Transport Means 2016, 536–539.
  • 63. Szpica D. (2016a), Testing the parameters of LPG injector solenoids as a function of the lift of the working component and the frequency of impulses, Proceedings of 20th International Scientific Conference Transport Means 2016, 551–555.
  • 64. Szpica D. (2017), Comparative analysis of low pressure gas-phase injector's characteristics, Flow Measurement and Instrumentation, 58: 74–86.
  • 65. Szpica D. (2018), Investigating fuel dosage non-repeatability of low pressure gas-phase injectors, Flow Measurement and Instrumentation, 59: 147–156.
  • 66. Szpica D. (2018a), Research on the influence of LPG/CNG injector outlet nozzle diameter on uneven fuel dosage, Transport, 33(1): 186–196.
  • 67. Szpica D. (2018b), Validation of indirect methods used in the operational assessment of LPG vapor phase pulse injectors, Measurement, 118: 253–261.
  • 68. Taghizadeh M, Ghaffari A, Najafi F. (2009), Modeling and identification of a solenoid valve for PWM control applications, Comptes Rendus Mecanique, 337(3): 131–140.
  • 69. Tian H, Zhao Y. (2018), Coil inductance model based solenoid on/off valve spool displacement sensing via laser calibration. Sensors, 18(12): 4492.
  • 70. Valtek Type 30 – technical data. [online] [02.08.2018]. Available at: https://www.valtek.it.
  • 71. Waluś K.J., Warguła Ł., Krawiec P., Adamiec J.M.. (2018), Legal regulations of restrictions of air pollution made by non-road mobile machinery - the case study for Europe: a review, Environmental Science and Pollution Research, 25(4): 3243–3259.
  • 72. Warguła Ł., Krawiec P., Waluś K.J., Kukla M. (2020), Fuel consumption test results for a self-adaptive, maintenance-free wood chipper drive control system, Applied Sciences, 10(8): 2727.
  • 73. Wendeker M., Jakliński P., Gabowski Ł., Pietrykowski K., Czarnigowski J., Hunicz J. (2007), Model of CNG flap valve injector for internal combustion engines, Combustion Engines, 4(131): 42–52.
  • 74. Xiang Z., Liu H., Tao G-L, Man J., Zhong W. (2008), Development of an ε-type actuator for enhancing high-speed electro-pneumatic ejector valve performance, Journal of Zhejiang University - Science A, 9(11): 1552–1559.
  • 75. Yang L.-J., Fu Q.-F., Qu Y.-Y., Zhang W., Du M.-L., Xu B.-R. (2012), Spray characteristics of gelled propellants in swirl injectors, Fuel, 97: 253–261.
  • 76. Yang W.Y., Cao W., Chung T.S., Morris J. (2005), Applied Numerical Methods Using MATLAB; John Wiley & Sons Inc., New Jersey.
Uwagi
1. This research was financed through subsidy of the Ministry of Science and Higher Education of Poland for the discipline of mechanical engineer-ing at the Faculty of Mechanical Engineering Bialystok University of Technology WZ/WM-IIM/4/2020.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-164ca311-0fe3-4ddf-b36e-f4607704a29e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.