PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Flooded wetlands mapping from Sentinel-2 imagery with spectral water index : a case study of Kampinos National Park in central Poland

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flood monitoring of wetlands and floodplains is a new issue in remote sensing, as compared to the mapping of open water bodies. The method based on spectral water indices, calculated on the basis of green, red and shortwave infrared bands, is one of the most popular methods for the recognition of a water body in multispectral images. The recently introduced Sentinel-2 satellite can provide multispectral images with high spatial resolution. This new data set is potentially of great importance for flood mapping, due to its free access and the frequent revisit capabilities. In this study, three popular water indices (Modified Normalized Difference Water Index, Normalized Difference Pond Index and Normalized Difference Turbidity Index) were used. The efficiency of the proposed method was tested experimentally using the Sentinel-2 image for the Kampinos National Park in Poland. The experiment compared four extraction algorithms including three based on individual water indicators and one on a combination of them. The results showed that the 10-metre false colour composite produced significantly improved the recognition of flooding in wetland areas by comparison with single spectral water indices. In this way, flooded wetlands were mapped based on the Sentinel-2 data set for the years 2017-2018.
Rocznik
Strony
492--505
Opis fizyczny
Bibliogr. 69 poz., rys., tab., wykr.
Twórcy
  • Polish Geological Institute - National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
Bibliografia
  • 1. Acreman, M., Holden, J., 2013. How wetlands affect floods. Wetlands, 33: 773-786.
  • 2. Bourgeau-Chavez, L., Kasischke, E., Brunzell, S., Mudd, J., Smith, K., Frick, A., 2001. Analysis of space-borne SAR data for wetland mapping in Virginia Riparian Ecosystems. International Journal of Remote Sensing, 22: 3665-3687.
  • 3. Brisco, B., Kaper, M., Hirose, T., Tedford, B., Liu, J., 2011. Evaluation of C-band polarization diversity and polarimetry for wetland mapping. Canadian Journal of Remote Sensing, 37: 82-92.
  • 4. Budzyńska, M., Dąbrowska-Zielińska, K., Turlej, K., Malek, L., Bartold, M., 2011. Monitoring przyrodniczy Bagien Biebrzańskich z zastosowaniem teledetekcji (in Polish). Woda-Środowisko-Obszary Wiejskie, 3: 39-64.
  • 5. Butera, M.K., 1983. Remote sensing of wetlands. IEEE Transactions on Geoscience and Remote Sensing, 3: 383-392.
  • 6. Chander, G., Markham, B.L., Helder, D.L., 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113: 893-903.
  • 7. Chavez, P.S., Sides, S.C., Anderson, J.A., 1991. Comparison of 3 different methods to merge multiresolution and multispectral data-Landsat tm and spot panchromatic. Photogrammetric Engineering and Remote Sensing, 57: 295-303.
  • 8. Chen, Q.L., Zhang, Y.Z., Ekroos, A., Hallikainen, M., 2004. The role of remote sensing technology in the EU water framework directive (WFD). Environmental Science & Policy, 7: 267-276.
  • 9. Davranche, A., Lefebvre, G., Poulin, B., 2010. Wetland monitoring using classification trees and SPOT-5 seasonal time series. Remote Sensing of Environment, 114: 552-562.
  • 10. Dong, Z.Y., Wang, Z.M., Liu, D.W., Song, K.S., 2014. Mapping wetland areas using landsat-derived NDVI and LSWI: a case study of west songnen plain, Northeast China. Journal of the Indian Society of Remote Sensing, 42: 569-576.
  • 11. Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., Bargellini, P., 2012. Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120: 25-36.
  • 12. Du, Y., Xue, H.P., Wu, S.J., Ling, F., Xiao, F., Wei, X.H., 2011. Lake area changes in the middle Yangtze region of China over the 20th century. Journal of Environmental Management, 92: 1248-1255.
  • 13. Du, Z.Q., Li, W.B., Zhou, D.B., Tian, L.Q., Ling, F., Wang, H.L., Gui, Y.M., Sun, B.Y., 2014. Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote Sensing, 5: 672-681.
  • 14. Dvorett, D., Davis, C., Papes, M., 2016. Mapping and hydrologic attribution of temporary wetlands using recurrent Landsat imagery. Wetlands, 36: 431-443.
  • 15. Feng, L., Hu, C.M., Chen, X.L., Cai, X.B., Tian, L.Q., Gan, W.X., 2012. Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010. Remote Sensing of Environment, 121: 80-92.
  • 16. Foody, G.M., 2002. Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80: 185-201.
  • 17. Gao, B.C., 1996. NDWI - A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58: 257-266.
  • 18. Guyot, G., 1989. Signatures spectrales des surfaces naturelles. Télédétection satellitaire, 5, Col. SAT, Ed. Paradigme.
  • 19. Huang, C., Chen, Y., Wu, J.P., 2014a. DEM-based modification of pixel-swapping algorithm for enhancing floodplain inundation mapping. International Journal of Remote Sensing, 35: 365-381.
  • 20. Huang, C.Q., Peng, Y., Lang, M.G., Yeo, I.Y., McCarty, G., 2014b. Wetland inundation mapping and change monitoring using Landsat and airborne LiDAR data. Remote Sensing of Environment, 141: 231-242.
  • 21. Huete, A., Liu, H., Batchily, K.V., Van Leeuwen, W., 1997. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59: 440-451.
  • 22. Ilnicki, P., 2002. Torfowiska i torf (in Polish). AR Poznań.
  • 23. Islam, M., Sado, K., 2006. Analyses of ASTER and spectroradiometer data with in situ measurements for turbidity and transparency study of lake Abashri. International Journal of Geo-Information, 2: 31-45.
  • 24. Jensen, J.R., 1996. Introductory Digital Image Processing, a Remote Sensing Perspective. Second edition. Prentice Hall, Upper Saddle River, New Jersey.
  • 25. Jones, K., Lanthier, Y., van der Voet, P., van Valkengoed, E., Taylor, D., Fernández-Prieto, D., 2009. Monitoring and assessment of wetlands using Earth Observation: the GlobWetland project. Journal of Environmental Management, 90: 2154-2169.
  • 26. Kasischke, E., Smith, K., Bourgeau-Chavez, L., Romanowicz, E., Brunzell, S., Richardson, C., 2003. Effects of seasonal hydrologic patterns in south florida wetlands on radar backscatter measured from ERS-2 SAR imagery. Remote Sensing of Environment, 88: 423-441.
  • 27. Kayastha, N., Thomas, V., Galbraith, J., Banskota, A., 2012. Monitoring wetland change using inter-annual Landsat time-series data. Wetlands, 32: 1149-1162.
  • 28. Kayranli, B., Scholz, M., Mustafa, A., Hedmark, A., 2009. Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands, 30: 111-124.
  • 29. Ko, B.C., Kim, H.H., Nam, J.Y., 2015. Classification of potential water bodies using landsat 8 OLI and a combination of two boosted random forest classifiers. Sensors, 15: 13763-13777.
  • 30. Kopeć, D., Michalska-Hejduk, D., Krogulec, E., 2013. The relationship between vegetation and groundwater levels as an indicator of spontaneous wetland restoration. Ecological Engineering, 57: 242-251.
  • 31. Krogulec, E., 2004. Ocena podatności wód podziemnych na zanieczyszczenia w dolinie rzecznej na podstawie przesłanek hydrodynamicznych (in Polish). Wyd. Uniwersytetu Warszawskiego, Warszawa.
  • 32. Krogulec, E., 2011. Charakterystyka uwarunkowań hydroekologicznych (in Polish). In: Ochrona i renaturyzacja mokradeł Kampinoskiego Parku Narodowego (eds. T. Okruszko, W. Mioduszewski and L. Kucharski): 73-92. Wydawnictwo SGGW, Warszawa.
  • 33. Lacaux, J.P., Tourre, Y.M., Vignolles, C., Ndione, J.A., Lafaye, M., 2007. Classification of ponds from highspatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal. Remote Sensing of Environment, 106: 66-74.
  • 34. Lewiński, S., 2007. Obiektowa klasyfikacja zdjęć satelitarnych jako metoda pozyskiwania informacji o pokryciu i użytkowaniu ziemi (in Polish). Instytut Geodezji i Kartografii, Seria monograficzna, 12. Warszawa.
  • 35. Li, J.H., Chen, W.J., 2005. A rule-based method for mapping Canada's wetlands using optical, radar and DEM data. International Journal of Remote Sensing, 26: 5051-5069.
  • 36. Li, W.B., Du, Z.Q., Ling, F., Zhou, D.B., Wang, H.L., Gui, Y.M., Sun, B.Y., Zhang, X.M., 2013. A comparison of land surface water mapping using the normalized difference water index from TM, ETM plus and ALI. Remote Sensing, 5: 5530-5549.
  • 37. Li, W., Qin, Y., Sun, Y., Huang, H., Ling, F., Tian, L., Ding, Y., 2016. Estimating the relationship between dam water level and surface water area for the Danjiangkou Reservoir using Landsat remote sensing images. Remote Sensing Letters, 7: 121-130.
  • 38. Loveline, E., 2015. Impacts of wetland degradation in Niger delta Nigeria and its significance in flood control. International Journal of Remote Sensing, 4: 177-184.
  • 39. Łachacz, A., 2004. Mokradła w krajobrazie - wybrane pojęcia (in Polish). Woda-Środowisko-Obszary-Wiejskie 4, 2a (11): 295-301.
  • 40. Martinez, J., Le Toan, T., 2007. Mapping of flood dynamics and spatial distribution of vegetation in the Amazon Floodplain using multitemporal SAR data. Remote Sensing of Environment, 108: 209-223.
  • 41. McFeeters, S.K., 1996. The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17: 1425-1432.
  • 42. Melack, J.M., Hess, L.L., 2010. Remote sensing of the distribution and extent of wetlands in the Amazon basin. Ecological Studies, 210: 43-59.
  • 43. Michalska-Hejduk, D., 2001. Stan obecny i kierunki zmian roślinności nieleśnej Kampinoskiego Parku Narodowego. Monographia botanica, 89: 1-134.
  • 44. Michalska-Hejduk, D., 2004. Najcenniejsze przyrodniczo obszary łąk i turzycowisk zachodniej części Kampinoskiego Parku Narodowego oraz propozycje ich ochrony(in Polish). Parki Narodowe Rezerwaty Przyrody, 23: 203-218.
  • 45. Michalska-Hejduk, D., Kopeć, D., Kucharski, L., Kębłowska, A., Otręba, A., Kloss, M., Dembek, A., 2011. Roślinność terenów mokradłowych - stan zachowania i tendencje dynamiczne (in Polish). In: Ochrona i renaturyzacja mokradeł Kampinoskiego Parku Narodowego (eds. T. Okruszko, W. Mioduszewski and L. Kucharski): 119-141. Wydawnictwo SGGW, Warszawa.
  • 46. Mitsch, W.J., 2009. Wetland ecosystems: John Wiley & Sons.
  • 47. Mitsch, W.J., Gosselink, J.G., 2015. Wetlands. 5th ed: 155-204. Wiley, Hoboken, NJ, USA.
  • 48. Monserud, R.A., Leemans, R., 1992. Comparing global vegetation maps with the Kappa statistic. Ecological Modelling, 62: 275-293.
  • 49. Morandeira, N.S., Grings, F., Facchinetti, C., Kandus, P., 2016. Mapping plant functional types in floodplain wetlands: an analysis of C-Band polarimetric SAR data from RADARSAT-2. Remote Sensing, 8: 174.
  • 50. Moser, L., Schmitt, A., Wendleder, A., Roth, A., 2016. Monitoring of the lac Bam wetland extent using dual-polarized X-band SAR data. Remote Sensing, 8: 302.
  • 51. Mwita, E., Menz, G., Misana, S., Becker, M., Kisanga, D., Boehme, B., 2013. Mapping small wetlands of Kenya and Tanzania using remote sensing techniques. International Journal of Applied Earth Observation and Geoinformation, 21: 173-183.
  • 52. Nandi, I., Srivastava, P.K., Shah, K., 2017. Floodplain mapping through support vector machine and optical/infrared images from Landsat 8 OLI/TIRS sensors: case study from Varanasi. Water Resources Management, 31: 1157-1171.
  • 53. Napiórkowska, M., 2014. Monitoring wetlands ecosystems using ALOS PALSAR (L-Band, HV) supplemented by optical data: a case study of Biebrza Wetlands in Northeast Poland. Remote Sensing, 6: 1605-1633.
  • 54. Okruszko, T., Mioduszewski, W., Kucharski, L., 2011. Ochrona i renaturyzacja mokradeł Kampinoskiego Parku Narodowego (in Polish). Wydawnictwo SGGW, Warszawa.
  • 55. Olszewski, A., Wierzbicki, A., Degórska, A., Ferchmin, M., Gudowicz, J., Lenartowicz, M., Otręba, N., 2018. Raport stacji bazowej zintegrowanego monitoringu środowiska przyrodniczego „Pożary” za rok 2017 (in Polish). Maszynopis, KPN, Izabelin.
  • 56. Ramsey, E.W., Laine, S.C., 1997. Comparison of Landsat thematic mapper and high resolution photography to identify change in complex coastal wetlands. Journal of Coastal Research, 13: 281-292.
  • 57. Seiler, R., Schmidt, J., Diallo, O., Csaplovics, E., 2009. Flood monitoring in a semi-arid environment using spatially high resolution radar and optical data. Journal of Environmental Management, 90: 2121-2129.
  • 58. Selva, M., Aiazzi, B., Butera, F., Chiarantini, L., Baronti, S., 2015. Hyper-sharpening: a first approach on SIM-GA data. International Journal of Applied Earth Observation and Geoinformation and Remote Sensing, 8: 3008-3024.
  • 59. Singh, K.V., Setia, R., Sahoo, S., Prasad, A., Pateriya, B., 2015. Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto International, 30: 650-661.
  • 60. Solovey, T., 2013. Zastosowanie metod teledetekcyjnych do identyfikacji obszarów podmokłych na Nizinach Środkowopolskich (in Polish). Biulletyn Państwowego Instytutu Geologicznego, 454: 133-139.
  • 61. Solovey, T., 2017. Identification of the Rozwarowo Marshes using radar remote sensing. Geographia Polonica, 90: 431-440.
  • 62. Sun, F.D., Sun, W.X., Chen, J., Gong, P., 2012. Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery. International Journal of Remote Sensing, 33: 6854-6875.
  • 63. Tobolski, K., 2003. Torfowiska na przykładzie Ziemi Świeckiej (in Polish). Wyd. Towarzystwo Przyjaciół Dolnej Wisły, Świecie.
  • 64. Tucker, C.J., Sellers, P. J., 1986. Satellite remote sensing of primary productivity. International Journal of Remote Sensing, 7: 1395-1416.
  • 65. White, L., Brisco, B., Dabboor, M., Schmitt, A., Pratt, A., 2015. A collection of SAR methodologies for monitoring wetlands. Remote Sensing, 7: 7615-7645.
  • 66. Whyte, A., Ferentinos, K.P., Petropoulos, G.P., 2018. A new synergistic approach for monitoring wetlands using Sentinels-1 and 2 data with object-based machine learning algorithms. Environmental Modelling & Software, 104: 40-54.
  • 67. Wu, Q., 2018. GIS and remote sensing applications in wetland mapping and monitoring. Comprehensive Geographic Information Systems, 2: 140-157.
  • 68. Xu, H.Q., 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27: 3025-3033.
  • 69. Zomer, R.J., Trabucco, A., Ustin, S., 2009. Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing. Journal of Environmental Management, 90: 2170-2177.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1648c3f5-706e-493a-8cbc-684f7b1c06ca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.