PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of addition of Cu on the properties of eutectic Sn-Bi solder alloy

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work reports the effect of Cu addition on the melting point, hardness and electrical resistivity of Sn-57 wt.% Bi eutectic solder alloy. Both binary eutectic Sn-57 wt.% Bi and ternary Sn-(57-x)Bi-xCu (x = 0.1, 0.3, 0.5, 0.7 and 1 wt.%) alloys containing various amounts of Cu were developed by melting casting route. The microstructure of the various solder alloys was analyzed using an optical microscope and a SEM. The variation in melting point, hardness and electrical resistivity of the Sn-Bi eutectic solder alloys with the addition of Cu was determined. The melting point of the eutectic Sn-Bi solder alloy was found to decrease up to the addition of 0.7 wt.% Cu. However, further addition of Cu led to an increase in the melting point of the alloy. Addition of Cu led to an increase in the hardness of the eutectic Sn-Bi solder alloy whereas the electrical resistivity of this alloy was found to increase up to the addition of 0.7 wt.% of Cu beyond which a decrease in the electrical resistivity was observed. A change in the microstructure of the solder alloy was observed when it was reheated above the melting temperature.
Słowa kluczowe
Wydawca
Rocznik
Strony
212--224
Opis fizyczny
Bibliogr. 42 poz., rys.
Twórcy
autor
  • Department of Metallurgical and Material Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, Pin-769008, India
autor
  • Department of Metallurgical and Material Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, Pin-769008, India
autor
  • Department of Metallurgical and Material Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, Pin-769008, India
Bibliografia
  • [1] Wu C. M.L., Yu D.Q., Law C.M.T., Wang L., Mat. Sci. Eng., R 44 (2004), 1.
  • [2] Puttlitz K.J., Stalter K.A., Handbook of Lead-Free Solder Technology for Microelectronic Assemblies, CRC Press, 2004.
  • [3] Cheng S., Huang C.M., Pecht M., Microelectron. Reliab., 75 (2017), 77.
  • [4] Osório W.R., Peixoto L.C., Garcia L.R., Noël N.M., Garcia A., J. Alloy. Compd., 572 (2013), 97.
  • [5] Ma D. L., Wu P. T., Nonferr. Metal. Soc., 25 (2015), 1225.
  • [6] Frongia F., Pilloni M., Scano A., Ardu A., Cannas C., Musinu A., Borzone G., Delsante S., Novakovic R., Ennas G., J. Alloy. Compd., 623 (2015), 7.
  • [7] Mokhtari O., Nishikawa H., Trans. JWRI, 44 (2015), 19.
  • [8] Yang F., Zhang L., Liu Z., Zhong S., Ma J., Bao LI., Adv. Mater. Sci. Eng., (2016), 1.
  • [9] Okamoto H. J., Phase Equilib. Diff., 31 (2010), 205.
  • [10] Miao H. W., Duh J. G., Mater. Chem. Phys., 71 (2001), 255.
  • [11] Saunders N., Miodownik A. P., Bull. Alloy Phase Diag., 11 (1990), 278.
  • [12] Snugovsky L., Cermignani C., Perovic D.D., Rutter J. W. J., Electron. Mater., 33 (2004), 1313.
  • [13] Pearson W. B., A Handbook of Lattice Spacings and Structures of Metals and AlloysInternational Series of Monographs on Metal Physics and Physical Metallurgy, 4, Pergamon, 1958.
  • [14] Chang L. S., Straumal B. B., Rabkin E., Gust W., Sommer F., J. Phase Equilib. Diff., 18 (1997), 128.
  • [15] Chen S.W., Wang C.H., Lin S.K., Chiu C.N., J Mater. Sci.-Mater. El., 18 (2007), 19.
  • [16] Doi K., Ohtani H., Hasebe M., Mater. Trans., 45 (2004), 380.
  • [17] Dong W., Shi Y., Xia Z., Lei Y., Guo F., J. Electron. Mater., 37 (2008).
  • [18] Mei Z., Morris J. W., J. Electron. Mater., 21 (1992), 599.
  • [19] Shalaby R. M., Int. J. Phys. Res., 3 (2013), 1
  • [20] Lee C. B., Jung S.B., Shin Y.E., Shur C.C., Mater. Trans., 42 (2001), 751.
  • [21] Silva B.L., Xavier M.G.C., Garcia A., Spinelli J.E., Mater. Sci. Eng. A-Struct., 705 (2017), 325.
  • [22] Hou D., Li D., Han L., Ji L., J. Rare Earth., 29 (2011), 129.
  • [23] Şahin M., Şensoy T., Çadirli E., Mat. Res., 2018.
  • [24] Valdes L.B., Proc. IRE, 42 (1954), 420.
  • [25] Mokhtari O., Nishikawa H., Mater. Sci. Eng. A-Struct., 651 (2016), 831.
  • [26] Issa T. T., Jasim F. N., Mohammed H. J., Abbas Z. K., AIP Conf. Proc., 1809 (2017), 020024.
  • [27] Wang F., Huang Y., Zhang Z., Yan C., Materials, 10 (2017), 920.
  • [28] Felton L.E., Raeder C.H., Knorr D. B., JOM, 45 (1993), 28.
  • [29] Silva B.L., Reinhart G., Nguyen-Thi H., Mangelinck-Noël N., Garcia A. Spinelli J.E., Mater. Charact., 107 (2015), 43.
  • [30] Zu F. Q., Zhou B., Li X. F., Yi X., Chen Y. P., Sun Q. Q. T., Nonferr. Metal. Soc., 17 (2007), 893.
  • [31] Yang Q.L., Shang J.K., J. Electron. Mater., 34 (11) (2005), 1363.
  • [32] Montesperelli G., Rapone M., Nanni F., Travaglia P., Riani P., Marazza R., Gusmano G., Mater. Corros., 59 (8) (2008), 662.
  • [33] Chuang T.H., Wu H.F., J. Electron. Mater., 40 (2011), 71.
  • [34] Shen J., Pu Y., Yin H., Luo D., Chen J., J. Alloy. Compd., 614 (2014), 63.
  • [35] Wang C. Y., Beckermann C., Mater. Sci. Eng. A-Struct., 171 (1993), 199.
  • [36] Mikolajczak P., Genau A., Ratke L., Metals, 7 (2017), 363.
  • [37] Moon K.W., Boettinger W.J., Kattner U.R., Biancaniello F.S., Handwerker C.A., J. Electron. Mater., 29 (2000), 1122.
  • [38] Shalaby R.M., Int. J. Phys. Res,. 3 (2013), 1.
  • [39] Sidorov V.E., Uporov S.A., Yagodin D.A., Grushevskii K.I., Uporova N.S., Samokhvalov D.V., High Temp.+ 50, (3) (2012), 348.
  • [40] Ghosh G., Miyake J., Fine M.E., JOM, 49 (1997), 56.
  • [41] Shen J., Pu Y., Yin H., Tang Q., J. Electron. Mater., 44 (2015), 532.
  • [42] Zang L., Yuan Z., Zhao H., Zhang X., Mater.s Lett., 63 (2009), 2067.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1647cd8a-a62b-4482-9a4f-57dcba987e41
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.