PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

StarCraft Strategy Classification of a Large Human versus Human Game Replay Dataset

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (16 ; 02-05.09.2021 ; online)
Języki publikacji
EN
Abstrakty
EN
Real-time strategy games are popular in AI research and education. Among them, Starcraft: Brood War (SCBW) is particularly well known. Recently, the largest known SCBW game replay dataset STARDATA was published. We classify player strategies used in the dataset for all 3 playable races and all 6 match-ups. We focus on early to mid-game strategies in matches less than 15 minutes long. By mapping the classified strategies to replay files, we label the files of the dataset and make the labeled dataset available.
Rocznik
Tom
Strony
137--140
Opis fizyczny
Bibliogr. 9 poz., rys., tab., wykr.
Twórcy
  • Institute of Informatics, Slovak Academy of Sciences Dúbravská cesta 9, 845 07 Bratislava, Slovakia
autor
  • Institute of Informatics, Slovak Academy of Sciences Dúbravská cesta 9, 845 07 Bratislava, Slovakia
  • Tatramed Software Líščie údolie 9, 841 01 Bratislava, Slovakia
Bibliografia
  • 1. Z. Lin, J. Gehring, V. Khalidov and G. Synnaeve, “STARDATA: A StarCraft AI Research Dataset,” 13th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, AIIDE 2017, pp. 50–56, https://arxiv.org/abs/1708.02139.
  • 2. S. Ontañon, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill and M. Preuss, “A Survey of Real-Time Strategy Game AI Research and Competition in StarCraft,” IEEE Transactions on Computational Intelligence and AI in games, IEEE Computational Intelligence Society, 2013, 5(4), pp. 1–19, http://dx.doi.org/10.1109/TCIAIG.2013.2286295.
  • 3. Mi. Čertický, D. Churchill, K.-J. Kim, Ma. Čertický and R. Kelly, “StarCraft AI Competitions, Bots and Tournament Manager Software,” IEEE Transaction on Games, 2018, 11(3), pp. 227–237, http://dx.doi.org/10.1109/TG.2018.2883499.
  • 4. O. Vinyals, I. Babuschkin et al., “Grandmaster level in StarCraft II using multi-agent reinforcement learning,” Nature, 2019, 575, pp. 350–354, http://dx.doi.org/10.1038/s41586-019-1724-z.
  • 5. B. G. Weber and M. Mateas, “A data mining approach to strategy prediction,” IEEE Symposium on Computational Intelligence and Games, 2009, pp. 140-147, http://dx.doi.org/10.1109/CIG.2009.5286483.
  • 6. H. C. Cho, K. J. Kim and S. B. Cho, “Replay-based strategy prediction and build order adaptation for StarCraft AI bots,” IEEE Conference on Computational Intelligence in Games (CIG), 2013, pp. 1-7, http://dx.doi.org/10.1109/CIG.2013.6633666.
  • 7. G. Synnaeve and P. Bessière, “A Dataset for StarCraft AI & an Example of Armies Clustering,” Artificial Intelligence in Adversarial Real-Time Games, 2012, https://arxiv.org/abs/1211.4552.
  • 8. Š. Krištofı́k, P. Malı́k, M. Kasáš, Š. Neupauer, “StarCraft agent strategic training on a large human versus human game replay dataset,” Federated Conference on Computer Science and Information Systems, FedCSIS 2020, 21, ACSIS, pp. 391–399, http://dx.doi.org/10.15439/2020F178.
  • 9. M. Świechowski, “Game AI Competitions: Motivation for the Imitation Game-Playing Competition,” Federated Conference on Computer Science and Information Systems, FedCSIS 2020, 21, ACSIS, pp. 155–160, http://dx.doi.org/10.15439/2020F126.
Uwagi
1. Track 1: Artificial Intelligence in Applications
2. Session: 15th International Symposium Advances in Artificial Intelligence and Applications
3. Short Paper
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1646b165-38f8-4b8e-abe1-e0f311353886
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.