ON THE QUASI-UNIFORM CONVERGENCE

Robert Drozdowski^a, Jacek Jędrzejewski^b, Agata Sochaczewska^c

^a Institute of Mathematics, Academia Pomeraniensis
ul. Arciszewskiego 22b, 76-200 Słupsk, Poland
e-mail: r.drozdowski@wp.pl

^bInstitute of Mathematics and Computer Science Jan Długosz University in Częstochowa al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland e-mail: jacek.m.jedrzejewski@gmail.com ^cInstitute of Mathematics, Academia Pomeraniensis

ul. Arciszewskiego 22b, 76-200 Słupsk, Poland e-mail: agata_sochaczewska@wp.pl

Abstract. Arzelá [1] considered the weaker form of uniform convergence which is as good as uniform convergence of sequences of functions in respect to continuity of the limit of a sequence of continuous functions. Some generalization of such convergence can be found in [5]. Similar kinds of convergence of function sequences were considered in [3] and [4]. In our article we generalize those kinds of convergence for functions defined in a topological space with values in a topological space.

In the article we use terminology which is explained in Engelking's monograph "General Topology" [2]. Among others, we use the notion of a star with respect to an open cover. If X is a topological space and α is a cover of this space, then the star $\operatorname{St}(x, \alpha)$ of a point $x \in X$ with respect to the cover α is defined as the union of all the sets from α which contain the point x, i.e.

$$\mathrm{St}(x,\alpha) = \bigcup \{ U : x \in U \land U \in \alpha \}$$

Definition 1 Let X, Y be topological spaces and f, $f_n, n \in \mathbb{N}$, be functions defined in X with values in Y. It is said that $(f_n)_{n=1}^{\infty}$ is quasi-uniformly convergent to f if:

- (1) $(f_n)_{n=1}^{\infty}$ converges pointwise to f;
- (2) for each open cover α of Y and each $n \in \mathbb{N}$ there exist $k \in \mathbb{N}$ and $n_1, \ldots, n_k \ge n$ such that if $t \in X$, then

$$f_{n_1}(t) \in \operatorname{St}(f(t), \alpha) \lor f_{n_2}(t) \in \operatorname{St}(f(t), \alpha) \lor \ldots \lor f_{n_k}(t) \in \operatorname{St}(f(t), \alpha).$$

Theorem 1 Let X be a compact space and Y be an arbitrary topological space. If $f_n: X \to Y$, where $n \in \mathbb{N}$, $f: X \to Y$ are continuous functions and $(f_n)_{n=1}^{\infty}$ is pointwise convergent to f, then $(f_n)_{n=1}^{\infty}$ is quasi-uniform convergent to f.

Proof. Let us take an arbitrary open cover α of Y. For an arbitrary, but fixed, positive integer m denote:

$$A_m = \{t \in X \colon f_m(t) \in \operatorname{St}(f(t), \alpha)\}.$$

Since $(f_n)_{n=1}^{\infty}$ is pointwise convergent, the equality

$$X = \bigcup_{m \ge n} A_m \tag{1}$$

is satisfied. Additionally, the set A_m is open for each $m \ge n$.

Indeed, if $t \in A_m$, then $f_m \in \operatorname{St}(f(t), \alpha)$, i.e. one can find $V \in \alpha$ such that $f(t) \in V$. Continuity of both f_m and f implies the existence of neighborhoods W_1 , W_2 of t such that $f(W_1) \subset \operatorname{St}(f(t), \alpha)$ and $f_m(W_2) \subset \operatorname{St}(f(t), \alpha)$.

Now, let $W_0 = W_1 \cap W_2$. Of course, W_0 is a neighborhood of t and for each $t' \in W_0$ we have $f_m(t') \in \text{St}(f(t'), \alpha)$, i.e. $W_0 \subset A_m$. We have shown that the set A_m is open for each $m \geq n$.

By the above, by the fact that X is compact and by (1), one can find positive integers k and $n_1, \ldots, n_k \ge n$ such that

$$X = A_{n_1} \cup \ldots \cup A_{n_k}.$$

Hence

$$f_{n_1}(t) \in \operatorname{St}(f(t), \alpha) \vee \ldots \vee f_{n_k}(t) \in \operatorname{St}(f(t), \alpha)$$

for $t \in X$. Finally, combining this with the pointwise convergence, we get that $(f_n)_{n=1}^{\infty}$ is quasi-uniformly convergent to f.

We shall use the symbol $\mathcal{C}(f)$ for the set of all points of continuity of a function f.

Definition 2 Let \mathfrak{I} be a σ -ideal of subsets of X. A function f from a topological space X to a topological space Y is said to be \mathfrak{I} -continuous if $X \setminus C(f)$ belongs to \mathfrak{I} .

Theorem 2 Let X be a topological space, Y be a regular one and f_n , f be functions from X to Y for each positive integer n. Let \mathfrak{I} be a σ -ideal of subsets of X such that $X \notin \mathfrak{I}$. If $(f_n)_{n=1}^{\infty}$ is \mathfrak{I} -continuous for each $n \in \mathbb{N}$ and $(f_n)_{n=1}^{\infty}$ is quasi-uniformly convergent to f, then f is \mathfrak{I} -continuous as well.

Proof. Let

$$E = \bigcap_{n=1}^{\infty} \mathcal{C}(f_n), \tag{2}$$

where $\mathcal{C}(f_n)$ denotes the set of points of continuity for f_n . We will show that the set $\mathcal{C}(f)$ of points of continuity for f contains the set E.

Let $x \in E$ and U be an arbitrary neighborhood of f(x). By regularity of the space Y, there exists an open set V such that

$$f(x) \in V \subset \operatorname{cl}(V) \subset U. \tag{3}$$

Consider the family $\alpha = \{U, X \setminus cl(V)\}$ which forms an open cover of Y. By pointwise convergence of $(f_n)_{n=1}^{\infty}$ to f, there exists n_0 such that

$$f_n(x) \in V \tag{4}$$

for each $n \ge n_0$. By the second condition of quasi-uniform convergence, one can find indexes $n_1 \ge n_0, \ldots, n_k \ge n_0$ such that

$$f_{n_1}(t) \in \operatorname{St}(f(t), \alpha) \lor f_{n_2}(t) \in \operatorname{St}(f(t), \alpha) \lor \ldots \lor f_{n_k}(t) \in \operatorname{St}(f(t), \alpha)$$

for each $t \in X$. By the fact that $f(x) \in V$, $f_{n_i}(x) \in V$ and f_{n_i} is continuous, we infer that there exists a neighborhood W_i of x such that $f(W_i) \subset V$ for each i = 1, ..., k.

Let $W_0 = \bigcap_{i=1}^k W_i$. Thus, W_0 is a neighborhood of x and if $t \in W_0$, then

there exists n_j such that $f_{n_j}(t) \in V$ and $f_{n_j}(t) \in \text{St}(f(t), \alpha)$. This means that $f(t) \in U$ for each $t \in W_0$, i.e. the inclusion $f(W_0) \subset U$ holds.

In the consequence, f is continuous at each point $x \in E$. Now, conditions $X \setminus \mathcal{C}(f) \subset E$ and $E \in \mathfrak{I}$ imply that $X \setminus \mathcal{C}(f) \in \mathfrak{I}$, i.e. f is \mathfrak{I} -continuous and the proof is complete. \Box

Definition 3 Let X, Y be topological spaces and f, $f_n, n \in \mathbb{N}$, be functions defined on X with values in Y. A sequence $(f_n)_{n=1}^{\infty}$ is called St-monotonically convergent to f if for every $x \in X$, for every $n \in \mathbb{N}$ and for every open cover of Y the implication

$$f_n(t) \in \operatorname{St}(f(t), \alpha) \Longrightarrow f_{n+1}(t) \in \operatorname{St}(f(t), \alpha)$$

holds.

Theorem 3 If X and Y are topological spaces, f_n , f are functions from X into Y, then $(f_n)_{n=1}^{\infty}$ converges uniformly to f if and only if $(f_n)_{n=1}^{\infty}$ is quasi-uniform and St-monotonically convergent to f.

Proof. It is known that uniform convergence implies quasi-uniform convergence. It is not difficult to see that uniform convergence also implies St-monotonic convergence.

Now, assume that $(f_n)_{n=1}^{\infty}$ is quasi-uniformly and St-monotonically convergent to f. Let us choose an arbitrary open cover α of Y. By quasi-uniform convergence, one can find $k \in \mathbb{N}$ and $n_1, \ldots, n_k \geq n$ such that

$$f_{n_1}(t) \in \operatorname{St}(f(t), \alpha) \lor f_{n_2}(t) \in \operatorname{St}(f(t), \alpha) \lor \ldots \lor f_{n_k}(t) \in \operatorname{St}(f(t), \alpha) \quad (5)$$

for each $t \in X$. By (5), we infer that for $t \in X$ there exists n_i such that $f_{n_i}(t) \in \text{St}(f(t), \alpha)$, whence by St-monotonic convergence for each $p \in \mathbb{N}$ we have:

$$f_{n_i+p}(t) \in \operatorname{St}(f(t), \alpha).$$

Let $n_0 = \max\{n_1, \ldots, n_k\}$. Obviously, if $t \in X$ and $n \ge n_0$, then

$$f_n(t) \in \operatorname{St}(f(t), \alpha),$$

which proves that $(f_n)_{n=1}^{\infty}$ is uniformly convergent to f.

References

- C. Arzelá. Sulle serie di funzioni. Mem. R. Accad. Sci. Ist. Bologna, serie 5 (8), 131–186, 701–744, 1899–1900.
- [2] R. Engelking. General Topology, PWN Warszawa 1977.
- [3] I. Kupka, V. Toma. A uniform convergence for non-uniform spaces. *Publ. Math. Debrecen*, 47, 299–309, 1995.
- [4] A. Sochaczewska. The strong quasi-uniform convergence. Math. Montisnigri, XV, 45–55, 2002.
- [5] B. Szökefalvi-Nagy. Introduction to Real Functions and Orthogonal Expansions. Akadémiai Kiadó, Budapest 1964.