PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dissimilar weldments of ferritic/martensitic grade P92 steel and Inconel 617 alloy: Role of groove geometry on mechanical properties and residual stresses

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A dissimilar joint of martensitic grade P92 and Ni-based Inconel 617 (IN617) alloy are employed commonly in advanced ultra-supercritical (AUSC) units to fabricate thick section components such as steam pipes and turbine rotors. This study investigated the weldability of the IN617 alloy and P92 steel dissimilar welds. Ni-based superalloy ERNiCrMo-3 filler was used to attempt the dissimilar joining for conventional V groove and narrow groove design by employing the gas tungsten arc welding (GTAW) process. The weld metal for the capping pass, backing pass, and near the interface showed the columnar and cellular grains while equiaxed grains are observed corresponding to root and filling passes. The energy dispersive spectroscopy and Electron probe micro-analyzer (EMPA) study confirmed the segregation of the Nb and Mo particles in inter-dendritic spaces and resulted in the formation of the Nb-rich NbC and laves phases and Mo-rich phases. The EDS line map and EPMA study of the P92 interface showed a sharp increase in Cr, Mo, and Ni concentration and a steep decrease in Fe concentration as moving from P92 base metal to weld metal. A negligible diffusion from filler weld to IN617 or vice versa across the IN617 interface was detected. The microhardness gradient along the weldments indicated a sharp rise in hardness value near the P92 fusion boundary due to the formation of the unmixed zone of lower hardness and the P92 coarse-grained heat-affected zone of higher hardness. The weld metal hardness results showed a great variation with an average hardness value for V groove and narrow groove welds of 227 and 262 HV, respectively. The mechanical tests were conducted at the ambient temperatures and data obtained for the weldments were compared with the base metals. The room temperature tensile tests showed the failure from the region of the P92 BM or the interface of P92 BM/weld metal, with joint strength of 646 ± 6 MPa and 747 ± 4 MPa in AW conditions for V groove and narrow groove, respectively. The Charpy impact test (CIT) also showed the variation in impact toughness along the weldments, and the ERNiCrMo-3 filler weld was identified as the weakest region of the welded joint in terms of impact toughness for both the groove designs. The residual stress variation along the thickness of the weld plate was measured using the deep hole drilling (DHT) methods, and the results indicated the peak magnitude of the residual stress for the V groove welded joint. The test results indicated that welded joint produced using ERNiCrMo-3 filler was safe for AUSC power plants' boiler applications for both the groove weld while optimum mechanical properties were measured for narrow groove weld.
Rocznik
Strony
art. no. e54, 2023
Opis fizyczny
Bibliogr. 78 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Indian Institute of Technology, Jodhpur N.H. 62, Nagaur Road, Karwar, Jodhpur 342037, India
  • Department of Mechanical Engineering, National Institute of Technology, Patna 800005, India
  • Department of Mechanical Engineering, Indian Institute of Technology, Jodhpur N.H. 62, Nagaur Road, Karwar, Jodhpur 342037, India
Bibliografia
  • 1. Information, available at: 〈http://www.eia.gov/forecasts/ieo/emissions.cfm〉 (International Energy Outlook 2013, Energy Information Administration, U.S. Energy Administration) (accessed on 24 Feb 2014) (2013).
  • 2. Pavan AHV, Vikrant KSN, Ravibharath R, Singh K. Development and evaluation of SUS 304H-IN 617 welds for advanced ultra supercritical boiler applications. Mater Sci Eng A. 2015;642:32-41. https://doi.org/10.1016/j.msea.2015.06.065.
  • 3. Viswanathan R, Henry JF, Tanzosh J, Stanko G, Shingledecker J, Vitalis B, Purgert R. U.S. Program on materials technology for ultra-supercritical coal power plants. J Mater Eng Perform. 2005;14:281-92. https://doi.org/10.1361/10599490524039.
  • 4. Lee J, Hwang J, Bae D. Welding residual stress analysis and fatigue strength assessment at elevated temperature for multi-pass dissimilar material weld between alloy 617 and p92 steel. Met Mater Int. 2018;24:877-85. https://doi.org/10.1007/s12540-018-0086-7.
  • 5. Abe F. Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700 °C and above. Engineering. 2015;1:211-24. https://doi.org/10.15302/J-ENG-2015031.
  • 6. Mageshkumar K, Velmurugan P, Rajkumar S, Arul K, Maridurai T, Subbiah R. Alloy 617 welding of similar and dissimilar materials: a review. Mater Today Proc. 2022;59:1561-5. https://doi.org/10.1016/j.matpr.2022.03.103.
  • 7. NaffakhMoosavy H, Aboutalebi MR, Seyedein SH, Mapelli C. Microstructural, mechanical and weldability assessments of the dissimilar welds between γ′- And γ″-strengthened nickel-base superalloys. Mater Charact. 2013;82:41-9. https://doi.org/10.1016/j.match ar.2013.04.018.
  • 8. Sorrentino S. 9-Welding technologies for ultra-supercritical power plant materials. Elsevier Ltd; 2017. https://doi.org/10.1016/B978-0-08-100552-1.00009-9.
  • 9. Fukuda M. Advanced USC technology development in Japan. Elsevier Ltd. 2017. https://doi.org/10.1016/B978-0-08-100552-1.00022-1.
  • 10. Shah Hosseini H, Shamanian M, Kermanpur A. Characterization of microstructures and mechanical properties of Inconel 617/310 stainless steel dissimilar welds. Mater Charact. 2011;62:425-31. https://doi.org/10.1016/j.matchar.2011.02.003.
  • 11. Di Gianfrancesco A. The fossil fuel power plants technology. Elsevier; 2017. https://doi.org/10.1016/B978-0-08-100552-1.00001-4.
  • 12. Zhang Y, Li K, Cai Z, Pan J. Creep rupture properties of dissimilar metal weld between Inconel 617B and modified 9%Cr martensitic steel. Mater Sci Eng A. 2019;764:138185. https://doi.org/10.1016/j.msea.2019.138185.
  • 13. Grong O, Sandnes L, Bergh T, Vullum PE, Holmestad R, Berto F. An analytical framework for modelling intermetallic compound (IMC) formation and optimising bond strength in aluminium-steel welds. Mater Des Process Commun. 2019;1:1-8. https://doi.org/10.1002/mdp2.57.
  • 14. Tytko D, Choi PP, Klower J, Kostka A, Inden G, Raabe D. Microstructural evolution of a Ni-based superalloy (617B) at 700 °C studied by electron microscopy and atom probe tomography. Acta Mater. 2012;60:1731-40. https://doi.org/10.1016/j.actamat.2011.11.020.
  • 15. Hosier JC, Tillack DJ. INCONEL alloy 617: a new high-temperature alloy. Met Eng. 1972;12:51-5.
  • 16. Abe F. Creep rates and strengthening mechanisms in tungsten-strengthened 9Cr steels. Mater Sci Eng A. 2001;319-321:770-3. https://doi.org/10.1016/S0921-5093(00)02002-5.
  • 17. Mohyla P, Kubon Z, Cep R, Samardzic I. Evaluation of creep properties of steel P92 and its welded joint. Metalurgija. 2014;53:175-8.
  • 18. Pandey C, Mahapatra MM, Kumar P, Saini N. Some studies on P91 steel and their weldments. J Alloys Compd. 2018;743:332-64. https://doi.org/10.1016/j.jallcom.2018.01.120.
  • 19. Vaillant JC, Vandenberghe B, Hahn B, Heuser H, Jochum C. T/P23, 24, 911 and 92: new grades for advanced coal-fired power plants-Properties and experience. Int J Press Vessel Pip. 2008;85:38-46. https://doi.org/10.1016/j.ijpvp.2007.06.011.
  • 20. Yan W, Wang W, Shan YY, Yang K. Microstructural stability of 9-12%Cr ferrite/martensite heat-resistant steels, Front. Mater Sci. 2013;7:1-27. https://doi.org/10.1007/s11706-013-0189-5.
  • 21. DuPont JN, Lippold JC, Kiser SD. Welding metallurgy and weldability of nickel-base alloys. John Wiley & Sons; 2009.
  • 22. Akram J, Kalvala PR, Misra M, Charit I. Creep behavior of dissimilar metal weld joints between P91 and AISI 304. Mater Sci Eng A. 2017;688:396-406. https://doi.org/10.1016/j.msea.2017.02.026.
  • 23. Lundin CD. Dissimilar metal welds-transition joints literature review. Weld J. 1982;61:58s-63s.
  • 24. Eckel JF. Diffusion across dissimilar metal joints. Weld J. 1964;43:170-8. https://doi.org/10.1016/j.ijpvp.2005.03.006.
  • 25. Wang Y, Cui H, Fan M, Chen Y, Lu F. Characterization on the gradient microstructure near the fusion interface of dissimilar metal between high Cr heat-resistant steel and Ni-based Alloy 617. Mater Charact. 2019;151:227-36. https://doi.org/10.1016/j.matchar.2019.03.001.
  • 26. Wang Y, Shao C, Fan M, Ma N, Lu F. Effect of solidified grain boundary on interfacial creep failure behavior for steel/nickel dissimilar metal welded joint. Mater Sci Eng A. 2021;803:140482. https://doi.org/10.1016/j.msea.2020.140482.
  • 27. Zhang Y, Jing H, Xu L, Han Y, Zhao L, Xiao B. Microstructure and mechanical performance of welded joint between a novel heat-resistant steel and Inconel 617 weld metal. Mater Charact. 2018;139:279-92. https://doi.org/10.1016/j.matchar.2018.03.012.
  • 28. Shah Hosseini H, Shamanian M, Kermanpur A. Microstructural and weldability analysis of Inconel617/AISI 310 stainless steel dissimilar welds. Int J Press Vessel Pip. 2016;144:18-24. https://doi.org/10.1016/j.ijpvp.2016.05.004.
  • 29. Naffakh H, Shamanian M, Ashrafizadeh F. Dissimilar welding of AISI 310 austenitic stainless steel to nickel-based alloy Inconel 657. J Mater Process Technol. 2009;209:3628-39. https://doi.org/10.1016/j.jmatprotec.2008.08.019.
  • 30. Matsunaga T, Hongo H, Tabuchi M. Interfacial failure in dissimilar weld joint of high boron 9% chromium steel and nickel-based alloy under high-temperature creep condition. Mater Sci Eng A. 2017;695:302-8. https://doi.org/10.1016/j.msea.2017.04.012.
  • 31. Zhang Y, Fan M, Ding K, Zhao B, Zhang Y, He Y, Wang Y, Wu G, Wei T, Gao Y. Formation and control of the residual δ-ferrite in 9% Cr-HAZ of Alloy 617/9% Cr dissimilar welded joint. Sci Technol Weld Join. 2020. https://doi.org/10.1080/13621718.2020.1719622.
  • 32. Guo X, He P, Xu K, Lv XC, Zhang JB, Gu Y. Microstructure investigation on the fusion zone of steel/nickel-alloy dissimilar weld joint for nozzle buttering in nuclear power industry. Weld World. 2021. https://doi.org/10.1007/s40194-021-01199-9.
  • 33. Ding K, Wang P, Liu X, Li X, Zhao B, Gao Y. Formation of lamellar carbides in alloy 617-HAZ and their role in the impact toughness of alloy 617/9%Cr dissimilar welded joint. J Mater Eng Perform. 2018;27:6027-39. https://doi.org/10.1007/s11665-018-3668-0.
  • 34. Shin KY, Lee JW, Han JM, Lee KW, Kong BO, Hong HU. Transition of creep damage region in dissimilar welds between Inconel 740H Ni-based superalloy and P92 ferritic/martensitic steel. Mater Charact. 2018;139:144-52. https://doi.org/10.1016/j.matchar.2018.02.039.
  • 35. Francis JA, Mazur W, Bhadeshia HKDH. Estimation of type IV cracking tendency in power plant steels. ISIJ Int. 2004;44:1966-8.
  • 36. Ranjbar K, Dehmolaei R, Amra M, Keivanrad I. Microstructure and properties of a dissimilar weld between alloy 617 and A387 steel using different filler metals. Weld World. 2018;62:1121-36. https://doi.org/10.1007/s40194-018-0610-x.
  • 37. Wang Y, Shao C, Cui H, Fan M, Ma N, Lu F. Failure competition behavior of 9Cr/617 dissimilar welded joint during LCF test at elevated temperature. Mater Sci Eng A. 2020;773:138810. https://doi.org/10.1016/j.msea.2019.138810.
  • 38. Akbari-Garakani M, Mehdizadeh M. Effect of long-term service exposure on microstructure and mechanical properties of alloy 617. Mater Des. 2011;32:2695-700. https://doi.org/10.1016/j.matdes.2011.01.017.
  • 39. Ren W, Lu F, Yang R, Liu X, Li Z. Liquation cracking in fiber laser welded joints of inconel 617. J Mater Process Technol. 2015;226:214-20. https://doi.org/10.1016/j.jmatprotec.2015.07.004.
  • 40. Ren W, Lu F, Nie P, Yang R, Liu X, Feng K, Li Z. Effects of the long-time thermal exposure on the microstructure and mechanical properties of laser weldings of Inconel 617. J Mater Process Technol. 2017;247:296-305. https://doi.org/10.1016/j.jmatprotec.2017.05.003.
  • 41. QW 461.3,Section IX, ASME Boiler and Pressure Vessel Code, 2010.
  • 42. Pandey C, Giri A, Mahapatra MM. On the prediction of effect of direction of welding on bead geometry and residual deformation of double-sided fillet welds. Int J Steel Struct. 2016;16:333-45. https://doi.org/10.1007/s13296-016-6007-z.
  • 43. ASTM E8. ASTM E8/E8M standard test methods for tension testing of metallic materials 1. Annu B ASTM Stand. 2010;4:1-27. https://doi.org/10.1520/E0008.
  • 44. A. E23-02a, ASTM E23-02a-Notched Bar Impact Testing of Metallic Materials pdf, ASTM Int. (2002).
  • 45. Taraphdar PK, Kumar R, Giri A, Pandey C, Mahapatra MM, Sridhar K. Residual stress distribution in thick double-V butt welds with varying groove configuration, restraints and mechanical tensioning. J Manuf Process. 2021;68:1405-17. https://doi.org/10.1016/j.jmapro.2021.06.046.
  • 46. Rajasekhar K, Harendranath CS, Raman R, Kulkarni SD. Microstructural evolution during solidification of austenitic stainless steel weld metals: a color metallographic and electron microprobe analysis study. Mater Charact. 1997;38:53-65. https://doi.org/10.1016/S1044-5803(97)80024-1.
  • 47. Pandey C, Mahapatra MM, Kumar P, Saini N. Homogenization of P91 weldments using varying normalizing and tempering treatment. Mater Sci Eng A. 2018;710:86-101. https://doi.org/10.1016/j.msea.2017.10.086.
  • 48. Kumar S, Pandey C, Goyal A. Effect of post-weld heat treatment and dissimilar filler metal composition on the microstructural developments, and mechanical properties of gas tungsten arc welded joint of P91 steel. Int J Press Vessel Pip. 2021;191:104373. https://doi.org/10.1016/j.ijpvp.2021.104373.
  • 49. S. Rostami Fashandi, Microstructure development during the dissimilar welding of Iron (Fe) and Nickel (Ni), 112, 2015. http://repository.tudelft.nl/view/ir/uuid:976fdf85-ce21-4898-bb5a-6f4d7ef82d05/%0A. https://drive.google.com/open?id=1cSgM2XLjqAQL9SCUVV-vScKtbJedv3rO.
  • 50. Jula M, Dehmolaei R, AlaviZaree SR. The comparative evaluation of AISI 316/A387-Gr.91 steels dissimilar weld metal produced by CCG TAW and PCGTAW processes. J Manuf Process. 2018;36:272-80. https://doi.org/10.1016/j.jmapro.2018.10.032.
  • 51. Pandey C, Mahapatra MM, Kumar P, Vidyrathy RS, Srivastava A. Microstructure-based assessment of creep rupture behaviour of cast-forged P91 steel. Mater Sci Eng A. 2017;695:291-301. https://doi.org/10.1016/j.msea.2017.04.037.
  • 52. Dak G, Pandey SM, Pandey C. Residual stress analysis, microstructural characterization, and mechanical properties of tungsten inert gas-welded P92/AISI 304L dissimilar steel joints. Proc Inst Mech Eng Part L J Mater Des Appl. 2022. https://doi.org/10.1177/14644207221124494.
  • 53. Pandey C, Mohan Mahapatra M, Kumar P, Thakre JG, Saini N. Role of evolving microstructure on the mechanical behaviour of P92 steel welded joint in as-welded and post weld heat treated state. J Mater Process Technol. 2019;263:241-55. https://doi.org/10.1016/j.jmatprotec.2018.08.032.
  • 54. Li G, Huang J, Wu Y. An investigation on microstructure and properties of dissimilar welded Inconel 625 and SUS 304 using high-power CO2 laser. Int J Adv Manuf Technol. 2015;76:1203-14. https://doi.org/10.1007/s00170-014-6349-7.
  • 55. Mittal R, Sidhu BS. Microstructures and mechanical properties of dissimilar T91/347H steel weldments. J Mater Process Technol. 2015;220:76-86. https://doi.org/10.1016/j.jmatprotec.2015.01.008.
  • 56. Pan C, Zhang Z. Characteristics of the weld interface in dissimilar austentic-pearlitic steel welds. Mater Charact. 1994;33:87-92. https://doi.org/10.1016/1044-5803(94)90070-1.
  • 57. Mayr P. Evolution of microstructure and mechanical properties of the heat affected zone in B-containing 9% chromium steels. Austria: Dr. Diss Graz University of Technology; 2007.
  • 58. Cao J, Gong Y, Zhu K, Yang ZG, Luo XM, Gu FM. Microstructure and mechanical properties of dissimilar materials joints between T92 martensitic and S304H austenitic steels. Mater Des. 2011;32:2763-70. https://doi.org/10.1016/j.matdes.2011.01.008.
  • 59. Saini N, Mahapatra MM, Pandey C, Mulik RS. Characterization of P92 Steel weldments in as-welded and PWHT conditions. Weld J. 2018;97:207-13. https://doi.org/10.29391/2018.97.018.
  • 60. Gariboldi E, Cabibbo M, Spigarelli S, Ripamonti D. Investigation on precipitation phenomena of Ni-22Cr-12Co-9Mo alloy aged and crept at high temperature. Int J Press Vessel Pip. 2008;85:63-71. https://doi.org/10.1016/j.ijpvp.2007.06.014.
  • 61. Hosseini HS, Alishahi M, Shamanian M. Zonular evaluation of Inconel 617/310 SS dissimilar joint by shear punch test. Mater Lett. 2012;67:259-62. https://doi.org/10.1016/j.matlet.2011.09.066.
  • 62. Cieslak MJ, Headley TJ, Kollie T, Romig AD. Melting and solidification study of Alloy 625. Metall Trans A Phys Metall Mater Sci. 1988;19A:2319-31. https://doi.org/10.1007/BF02645056.
  • 63. Sayyar N, Shamanian M, Niroumand B, Kangazian J, Szpunar JA. EBSD observations of microstructural features and mechanical assessment of INCOLOY 825 alloy/AISI 321 stainless steel dissimilar welds. J Manuf Process. 2020;60:86-95. https://doi.org/10.1016/j.jmapro.2020.10.042.
  • 64. Zhang X, Li DZ, Li YY, Lu SP. Effect of Nb and Mo on the microstructure, mechanical properties and ductility-dip cracking of Ni-Cr-Fe weld metals. Acta Metall Sin English Lett. 2016;29:928-39. https://doi.org/10.1007/s40195-016-0469-z.
  • 65. Banovic SW, DuPont JN, Marder AR. Dilution and microsegregation in dissimilar metal welds between super austenitic stainless steel and nickel base alloys. Sci Technol Weld Join. 2002;7:374-83. https://doi.org/10.1179/136217102225006804.
  • 66. Silva CC, De Miranda HC, Motta MF, Farias JP, Afonso CRM, Ramirez AJ. New insight on the solidification path of an alloy 625 weld overlay. J Mater Res Technol. 2013;2:228-37. https://doi.org/10.1016/j.jmrt.2013.02.008.
  • 67. Alvaraes CP, Jorge JCF, Souza LFGD, Araujo LS, Mendes MC, Farneze HN. Microstructure and corrosion properties of single layer Inconel 625 weld cladding obtained by the electroslag welding process. J Mater Res Technol. 2020;9:16146-58. https://doi.org/10.1016/j.jmrt.2020.11.048.
  • 68. Marchese G, Lorusso M, Parizia S, Bassini E, Lee JW, Calignano F, Manfredi D, Terner M, Hong HU, Ugues D, Lombardi M, Biamino S. Influence of heat treatments on microstructure evolution and mechanical properties of Inconel 625 processed by laser powder bed fusion. Mater Sci Eng A. 2018;729:64-75. https://doi.org/10.1016/j.msea.2018.05.044.
  • 69. Silva CC, de Albuquerque VHC, Mina EM, Moura EP, Tavares JMRS. Mechanical Properties and Microstructural Characterization of Aged Nickel-based Alloy 625 Weld Metal, Metall. Mater Trans A Phys Metall Mater Sci. 2018;49:1653-73. https://doi.org/10.1007/s11661-018-4526-2.
  • 70. Devendranath Ramkumar K, Kumar PSG, Sai Radhakrishna V, Kothari K, Sridhar R, Arivazhagan N, Kuppan P. Studies on microstructure and mechanical properties of keyhole mode Nd:YAG laser welded Inconel 625 and duplex stainless steel, SAF 2205. J Mater Res. 2015;30:3288-98. https://doi.org/10.1557/jmr.2015.276.
  • 71. Kumar A, Pandey C. Some studies on dissimilar welds joint P92 steel and Inconel 617 alloy for AUSC power plant application. Int J Press Vessel Pip. 2022;198:104678. https://doi.org/10.1016/j.ijpvp.2022.104678.
  • 72. Kumar A, Pandey C. Development and evaluation of dissimilar gas tungsten arc-welded joint of P92 steel/inconel 617 alloy for advanced ultra-supercritical boiler applications. Metall Mater Trans A. 2022;53:3245-73. https://doi.org/10.1007/s11661-022-06723-0.
  • 73. Ramkumar KD, Abraham WS, Viyash V, Arivazhagan N, Rabel AM. Investigations on the microstructure, tensile strength and high temperature corrosion behaviour of Inconel 625 and Inconel 718 dissimilar joints. J Manuf Process. 2017;25:306-22. https://doi.org/10.1016/j.jmapro.2016.12.018.
  • 74. Zhao Q, Ma H, Wang M, Zhao X, Zhang S, Tang Y, Qin G. Microstructures and high-temperature failure analyses of 25Cr-35Ni-Nb + MA/32Cr-20Ni-Nb dissimilar welded joint with different filler wires. Mater Des. 2022;221:110950. https://doi.org/10.1016/j.matdes.2022.110950.
  • 75. Pandey C, Mahapatra MM. Effect of groove design and post-weld heat treatment on microstructure and mechanical properties of P91 steel weld. J Mater Eng Perform. 2016;25:2761-75. https://doi.org/10.1007/s11665-016-2127-z.
  • 76. Sridhar R, Devendranath Ramkumar K, Arivazhagan N. Characterization of microstructure, strength, and toughness of dissimilar weldments of inconel 625 and duplex stainless steel SAF 2205. Acta Metall Sin English Lett. 2014;27:1018-30. https://doi.org/10.1007/s40195-014-0116-5.
  • 77. Vinet L, Zhedanov A. A “missing” family of classical orthogonal polynomials. J Phys A. 2010. https://doi.org/10.1088/1751-8113/44/8/085201.
  • 78. Sirohi S, Pandey C, Goyal A. Role of the Ni-based filler (IN625) and heat-treatment on the mechanical performance of the GTA welded dissimilar joint of P91 and SS304H steel. J Manuf Process. 2021;65:174-89. https://doi.org/10.1016/j.jmapro.2021.03.029.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1642a0e0-a826-42ca-9df4-29bf22072644
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.