PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of groundwater quality in the lower Soummam Valley, North-East of Algeria

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Analysis of groundwater quality in the alluvial aquifer of the lower Soummam Valley, North-East of Algeria, was realised through the application of multivariate statistical methods: hierarchical cluster analysis (HCA) in Q and R modes, factorial correspondence analysis (FCA), and principal component analysis (PCA), to hydrochemical data from 51 groundwater samples, collected from 17 boreholes during periods of June, September 2016 and March 2017. The objectives of this approach are to characterise the water quality and to know the factors which govern its evolution by processes controlling its chemical composition. The Piper diagram shows two hydrochemical facies: calcium chloride and sodium bicarbonate. Statistical techniques HCA, PCA, and FCA reveal two groups of waters: the first (EC, Ca2+, Mg2+, Cl-, SO42- and NO3-) of evaporitic origin linked to the dissolution processes of limestone rocks, leaching of saliferous soils and anthropogenic processes, namely contamination wastewater and agricultural activity, as well marine intrusion; and the second group (Na+, K+, and HCO3-) of carbonated origin influenced by the dissolution of carbonate formations and the exchange of bases. The hermodynamic study has shown that all groundwater is undersaturated with respect to evaporitic minerals. On the other hand, it is supersaturated with respect to carbonate minerals, except for water from boreholes F9, F14, and F16, which possibly comes down to the lack of dissolution and arrival of these minerals. The results of this study clearly demonstrate the utility of multivariate statistical methods in the analysis of groundwater quality.
Wydawca
Rocznik
Tom
Strony
1--12
Opis fizyczny
Bibliogr. 64 poz., rys., tab., wykr.
Twórcy
  • University of Mohamed Boudiaf, Faculty of Technology, Laboratory of City, Environment, Society and Sustainable Development, 166 Ichebilia, 28000, M’sila, Algeria
  • University of Sidi Mohammed Ben Abdellah, Faculty of Sciences and Techniques, Laboratory of Functional Ecology and Environment Engineering, Fez, Morocco
  • University of Batna 2, Laboratory of Applied Research in Hydraulics, Batna, Algeria
  • Scientific and Technical Research Center for Arid Areas (CRSTRA), Biskra, Algeria
autor
  • University of Mohamed Boudiaf, Faculty of Technology, M’sila, Algeria
autor
  • Scientific and Technical Research Center for Arid Areas (CRSTRA), Biskra, Algeria
  • Scientific and Technical Research Center for Arid Areas (CRSTRA), Biskra, Algeria
Bibliografia
  • APHA 1989. Standard methods for the examination of water and wastewater. 17th ed. Washington, DC. American Public Health Association.
  • APHA 1995a. Standard methods for the examination of water and wastewater. 19th ed. New York, USA. American Public Health Association.
  • APHA 1995b. Standard methods for the examination of water and wastewater. 19th ed. Washington, DC. American Public Health Association.
  • APODACA L.E., BAILS J.B., SMITH C.M. 2002. Water quality in shallow alluvial aquifers, upper Colorado River basin, Colorado. Journal of the American Water Resources Association. Vol. 38(1) p. 133–143. DOI 10.1111/j.1752-1688.2002.tb01541.x.
  • APPELO C.A.J., POSTMA D. 1993. Geochemistry, groundwater and pollution. Geological magazine. Vol. 132(1) p. 124–125. DOI 10.1017/S0016756800011523.
  • ASHLEY R.P., LIYOD J.W. 1978. An example of the use of factor analysis and cluster analysis in groundwater chemistry interpretation. Journal of Hydrology. Vol. 39(3–4) p. 355–364. DOI 10.1016/0022-1694(78)90011-2
  • BAUDOT J.Y. 2019. Analyse factorielle des correspondances [Correspondence factor analysis] [online]. [Access 15.06.2020]. Available at: http://www.jybaudot.fr/Analdonnees/afc.html
  • BELKHIRI L. 2011. Etude de la pollution des eaux souterraines: Cas de la plaine d’Ain Azel – Est Algérien [Study of groundwater pollution: case of the plain of Ain Azel – Eastern Algeria]. PhD Thesis, University of Hadj Lakhdar Batna, Algeria pp. 94.
  • BELKHIRI L., BOUDOUKHA A., MOUNI L. 2011. A multivariate statistical analysis of groundwater chemistry data. International Journal of Environmental Research. Vol. 5(2) p. 537–544.
  • BENNABI M.S. 1985. Contribution à l’etude hydrogéologique de la vallée de l’Oued Sahel-Soummam, Algérie [Contribution to the hydrogeological study of the Oued Sahel-Soummam valley, Algeria] [online]. PhD Thesis. Grenoble. Université Scientifique et Médicale de Grenoble pp. 156. [Access 15.06.2020]. Available at: https://tel.archives-ouvertes.fr/file/index/docid/759401.pdf
  • BENZACRI J.P. 1976. L’analyse des données: L’analyse des correspondances [Data analysis: Correspondence analysis]. Vol. 2. Paris, Dunod. ISBN 2-04-004255-5 pp. 616.
  • BLOWES D.W., PTACEK C.J., JURJOVEC J. 2003. Mill tailings: Hydrogeology and geochemistry. In: Environmental aspects of mine wastes. Short course series Vol. 31. Eds. J.L. Jambor, D.W. Blowes, A.I.M. Ritchie. Nepean. Mineralogical Association of Canada p. 95–116.
  • BOUDOUKHA A., GHODBANE M. 2014. Characterization of the mineralization of the Chemora water table (Eastern Algeria) by geochemical and statistical methods. Handbook on the Applied Sciences and Engineering. Vol. 1 p. 16–25. DOI 10.18488/journal.1001/2014.1/1001.1.
  • BRIGITTE E., JEROME P. 2008. Analyses factorielles simples et multiples: Objectifs, méthodes et interprétation [Single and multiple factor analyses: Objectives, methods and interpretation]. 4 th ed. Paris. Dunod. ISBN 978-2-10-051932-3 pp. 318.
  • CLESCERI L.S., GREENBERG A.E., EATON A.D. (eds.) 1998. Standard methods for the examination of water and wastewater. 20 th ed. Washington. APHA, AWWA, WEF.
  • DAGNELIE P. 2011. Statistique théorique et appliquée. T. 2. Inférence statistique à une et à deux dimensions [Theoretical and applied statistics. Vol. 2. Statistical inference in one and two dimensions]. Bruxelles. De Boeck. ISBN 978-2-8041-6336-5 pp. 736.
  • DAHMANA A. 2003. Caractérisation de la biodiversité dans la ripisylve de l’oued Soummam: Cas de la végétation et des oiseaux [Characterization of biodiversity in the riparian forest of the Soummam wadi: Case of vegetation and birds]. MSc Thesis. Biologie de la conservation et écodéveloppement. Béjaia pp. 94.
  • DANIELSSON A., CATO I., CARMAN R., RAHM L. 1999. Spatial clustering of metals in the sediments of the Skagerrak/Kattegat [online]. Applied Geochemistry. Vol. 14 p. 689–706. [Access 13.06.2020]. Available at: https://zarmesh.com/wp-content/uploads/2016/01/Spatial-clustering-of-metals-in-the-sediments-of-the-Skagerrak-Kattegat.pdf
  • DOMINIQUE L. 2009. Introduction à l’analyse factorielle des correspondances [Introduction to factorial correspondence analysis] [online]. Laboratoire Société Environnement Territoire pp. 13. [Access 14.06.2020]. Available at: https://web-new.univ-pau.fr/Recherche/Set/LAFFLY/docs_laffly/INTRODUCTIO-N_AFC.pdf
  • DUPLAN L. 1960. Morphologie régionale: Bejaia. 19e congrès géologiques international [Regional morphology: Bejaia. 19th international geological congress]. 1ère série. Algérie pp. 39.
  • FARNHAM I.M., JOHANNESSON K.H., SINGH A.K., HODGE V.F., STETZENBACH K.J. 2003. Factor analytical approaches for evaluating groundwater trace element chemistry data. Analytica Chimica Acta. Vol. 490(1–2) p. 123–138. DOI 10.1016/S0003-2670(03)00350-7.
  • FARNHAM I.M., STETZENBACH K.J., SINGH A.K., JOHANNESSON K.H. 2000. Deciphering groundwater flow systems in Oasis Valley, Nevada, using trace element chemistry, multivariate statistics, and geographical information system. Mathematical Geology. Vol. 32 p. 943–968. DOI 10.1023/A:1007522519268.
  • FOUCAULT A., RAOULT J.F. 2010. Dictionnaire de geologie [Dictionary of geology]. 7th ed. Paris. Dunod. ISBN 978-2-10-054778-4 pp. 388.
  • FOVELL R., FOVELL M.Y. 1993. Climate zones of the conterminous États-Unis defined using cluster analysis. Journal of Climate. Vol. 6 p. 2103–2135. DOI 10.1175/1520-0442(1993)006.
  • FRAPE S.K., FRITZ P., MCNUTT R.H. 1984. Water-rock interaction and chemistry of groundwaters from the Canadian Shield. Geochimica and Cosmochimica Acta. Vol. 48(8) p. 1617–1627. DOI 10.1016/0016-7037(84)90331-4.
  • FRIARS L., JOHNSTON J. 1929. The solubility of calcium carbonate in certain aqueous solutions at 25°C. Journal of the American Chemical Society. Vol. 51(7) p. 2082–2093.
  • GAAGAI A. 2017. Etude de l’évolution de la qualité des eaux du barrage de Babar (Sud-est Algérien) et l’impact de la rupture de la digue sur l’environnement [Study of the evolution of the water quality of the Babar dam (south-eastern Algeria) and the impact of the rupture of the dike on the environment]. PhD Thesis. University of Batna 2. Algeria pp. 185.
  • GAAGAI A., AOUISSI H.A., MAALAM S.E., ABABSA M. 2020. Contribution of statistical analysis methods to assessment of the physicochemical quality of the dam. Global Journal of Engineering Sciences. Vol. 6 (4). DOI 10.33552/GJES.2020.06.000642.
  • GAAGAI A., BOUDOUKHA A., BOUMEZBEUR A., BENAABIDATE L. 2017. Hydrochemical characterization of surface water in the Babar watershed (Alegria) using environmetric techniques and time series analysis. International Journal of River Basin Management. Vol. 15(3) p. 361–372. DOI 10.1080/15715124.2017.1299157.
  • GHODBANE M. 2018. Estimation des potentialités des eaux souterraines et estimation de la pollution par les nitrates; Cas de la région de Chemora-Est algérien [Estimation of groundwater potential and estimation of nitrate pollution; Case the region Eastern of Chemora in Algeria]. PhD thesis. Algeria. University of Batna 2 pp. 157.
  • GHODBANE M., BOUDOUKHA A., BENAABIDATE L. 2016. Hydrochemical and statistical characterization of groundwater in the Chemora area, Northeastern Algeria. Desalination and Water Treatment. Vol. 57 (32) p. 14858–14868. DOI 10.1080/19443994.2015.1067924.
  • GRZYWNA A., MIELNICZUK U.B. 2020. Spatial and temporal variability of water quality in the Bystrzyca River basin. Poland. Water. Vol. 12 (1). DOI 10.3390/w12010190.
  • GÜLER C., THYNE G., MCCRAY J., TURNER A. 2002. Evaluation of graphical and multivariate statistical methods for the classification of water chemistry data. Hydrogeology Journal. Vol. 10 p. 455–474. DOI 10.1007/s10040-002-0196-6.
  • HASSISSENE M. 1989. Etude géologique des Djebels Aghabalou et Gouraya. Eléments occidentaux du domaine des Babors, Région de Bejaia [Geological study of the Djebels Aghabalou and Gouraya. Western elements of the Babors domain, Bejaia region]. MSc Thesis. U.S.T.H.B. ed. O.P.U. Alger. Univ. Béjaia pp. 98.
  • HOURIA R. 2007. Relation entre les nappes et la salinité dans les sols gypseux de la région d’Ain Ben Noui. Biskra [Relationship between groundwater and salinity in the gypsum soils of the Ain Ben Noui region. Biskra]. MSc Thesis. Univ-El Hadj Lakhder. Batna. Algérie pp. 98.
  • KESSASRA F., MESBAH M., BENDJOUDI H. 2014. Modélisation des écoulements souterrains dans les alluvions de la basse vallée de la Soummam (nord-est algérien) et perspective sur l’évolution des prélèvements [Modeling of groundwater flows in the alluvial deposits of the lower Soummam valley (north-eastern Algeria) and perspective on the evolution of withdrawals]. Bulletin du Service Géologique National. Vol. 25. No. 2 p. 1–18.
  • KIM J.H., KIM R.H., LEE J.H., CHEONG T.J., YUM B.W., CHANG H.W. 2005. Multivariate statistical analysis to identify the major factors governing groundwater quality in the coastal area of Kimje, South Korea, Hydrological Processes. Vol. 19 p. 1261–1276. DOI 10.1002/hyp.5565.
  • LHA 2021. Logiciels. Diagrammes: Logiciel d’hydrochimie [Software. Diagrams: Hydrochemistry Software]. Setup Diagrams. Version 6.76 [online]. Laboratoire d’Hydrogéologie d’Avignon. [Access 09.01.2021]. Available at: http://www.lha.univ-avignon.fr/LHA-Logiciels.htm
  • LOUVRIER M. 1976. Acquisition et traitements des données hydrogéochimiques [Acquisition and processing of hydrogeochemical data] [online]. 76 SGN 093 AME Service Géologique National. Orléans. BRGM pp. 174 + XVII. [Access 15.06.2020]. Available at: http://infoterre.brgm.fr/rapports/76-SGN-093-AME.pdf
  • LOVE D., HALLBAUER D., AMOS A., HRANOVA R. 2004. Factor analysis as a tool in groundwater quality management: Two southern African case studies. Physics and Chemistry of the Earth. Parts A/B/C. Vol. 29(15–18) p. 1135–1143. DOI 10.1016/j.pce.2004.09.027.
  • MAHLKNECHT J., STEINICH B., NAVARRO DE LEON I. 2004. Groundwater chemistry and mass transfers in the Independence Aquifer, central Mexico, by using multivariate statistics and mass balance models. Environmental Geology. Vol. 45 p. 781–795.
  • MAYO L., LOUCKS M.D. 1995. Solute and isotopic geochimistry and groundwater flow in the central Wasatch Range, Utah. Journal of Hydrology. Vol. 172(1–4) p. 31–59. DOI 10.1016/0022-1694(95)02748-E.
  • MENG S.X., MAYNARD J.B. 2001. Use of statistical analysis to formulate conceptual models of geochemical behavior: Water chemical data from the Botucatu aquifer in São Paulo state, Brazil. Journal of Hydrology. Vol. 250(1–4) p. 78–97. DOI 10.1016/S0022-1694(01)00423-1.
  • MOMEN B., WEICHLER L., BOYLEN C.W., ZEHR J.P. 1996. Application of multivariate statistics in detecting temporal and spatial patterns of water chemistry in Lake George, New York. Ecological Modeling. Vol. 91(1–3) p. 183–192. DOI 10.1016/0304-3800(95)00189-1.
  • MONJEREZI M., VOGT R.D., AGAARD P., SAKA J.D.K. 2008. Hydrogeochemical processes in an area with saline groundwater in lower Shire River valley, Malawi: An integrated application of hierarchical cluster and principal component analyses. Applied Geochemistry. Vol. 26 p. 1399–1413. DOI 10.1016/j.apgeochem.2011.05.013.
  • MOUNI L., MERABET D., MOUSSACEB K., ARKOUB H. 2009. Etude et caractérisation physico-chimique des eaux de l’oued Soummam (Algérie) [Study and physico-chemical characterization of the waters of the Wadi Soummam (Algeria)]. Science et changements planétaires/Sécheresse. Vol. 20(4) p. 360–366. DOI 10.1684/Sec.2009.0209.
  • OLMEZ I., BEAL J.W., VILLAUME J.F. 1994. A new approach to understanding multiple-source groundwater contamination: Factor analysis and chemical mass balances. Water Research. Vol. 28(5) p. 1095–1101. DOI 10.1016/0043-1354(94)90195-3.
  • PARKHURST D.L., APPELO C.A.J. 1999. User’s guide to PHREEQC – a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resources Investigations Report 99-4259 [online]. Denver, Colorado. U.S. Geological Survey pp. 312. [Access 14.06.2020]. Available at: http://acamedia.info/sciences/J_G/references/PHREEQC_Manual.pdf
  • PIPER A.M. 1994. A graphic procedure in geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union. Vol. 25(6) p. 914–928. DOI 10.1029/TR025i006p00914.
  • RAZACK M., DAZY J. 1990. Hydrochemical characterization of groundwater mixing in sedimentary and metamorphic reservoirs with combined use of Piper’s principle and factor analysis. Journal of Hydrology. Vol. 114(3–4) p. 371–393. DOI 10.1016/0022-1694(90)90066-7.
  • REGHUNATH R., MURTHY T.R.S., RAGHAVAN B.R. 2002. The utility of multivariate statistical techniques in hydrogeochemical studies: An example from Karnataka, India. Water Research. Vol. 36(10) p. 2437–2442. DOI 10.1016/S0043-1354(01)00490-0.
  • SAOU A., MUSTAFA M., JEAN L.S. 2012. Hydrogeochemical processes associated with double salinization of water in Algérian Aquifer, carbonated and evaporitic. Polish Journal of Environment. Vol. 21(4) p. 1013–1024.
  • SEMAR A., SAIBI H., MEDJERAB A. 2013. Contribution of multivariate statistical techniques in the hydrochemical evaluation of groundwater from the Ouargla phreatic aquifer in Algeria. Arabian Journal of Geosciences. Vol. 6(9) p. 3427–3436. DOI 10.1007/s12517-012-0616-4.
  • SILVA-FILHO E.V., SOBRAL BARCELLOS R.G., EMBLANCH C., BLAVOUX B., SELLA S.M., DANIEL M., SIMLER R., WASSERMAN J.C. 2009. Groundwater chemical characterization of a Rio de Janeiro coastal aquifer, SE – Brazil. Journal of South American Earth Sciences. Vol. 27(1) p. 100–108. DOI 10.1016/j.jsames.2008.11.004.
  • SINGARAJA C., THIVYA C., CHIDAMBARAM S., THILAGAVATHI R., PRASANNA M.V. 2013. Statistical analysis of the hydrogeochemical evolution of groundwater in hard rock coastal aquifers of Thoothukudi district in Tamil Nadu, India. Environmental Earth Sciences. Vol. 71(1) p. 451–464. DOI 10.1007/s12665-013-2453-5.
  • SNEATH P.H.A., SOKAL R.R. 1973. Numerical taxonomy: The principles and practice of numerical classification [online]. San Francisco. WF Freeman & Co pp. 573. [Access 15.06.2020]. Available at: http://www.garfield.library.upenn.edu/classics1987/A1987F272800001.pdf
  • SUBRAMANI T., RAJMOHAN N., ELANGO L. 2010. Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environment Monitoring Assessment. Vol. 162(1–4) p. 123–137. DOI 10.1007/s10661-009-0781-4.
  • TORSHIZIAN H.A., MOLLAI H., KALANI M., AHWAZ M., JAVANBAKHT M. 2009. Hydrogeochemical analysis of the Siyah-kuh district playa brines Central Iran. Neues Jahrbuch für Geologie und Paläontologie. Vol. 253. No. 2–3 p. 281–292. DOI 10.1127/0077-7749/2009/0253-0281.
  • WARD J.H. 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association. Vol. 58 (301) p. 236–244. DOI 10.1080/01621459.1963.10500845.
  • WHO 2004. Guidelines for drinking-water quality, recommendations [online]. 3rd ed. Geneva, Word Health Organization. Vol. 1. ISBN 9241546387 pp. 515. [Access 15.06.2020]. Available at: http://apps.who.int/iris/bitstream/handle/10665/42852/924154638.pdf?sequence=1
  • WILLIAMS R.E. 1982. Statistical identification of hydraulic connections between the surface of a mountain and internal mineralized sources. Groundwater. Vol. 20 p. 466–478. DOI 10.1111/j.1745-6584.1982.tb02767.x.
  • WUNDERLIN D.A., DÍAZ M.D.P., AMÉ M.V., PESCE S.F., HUED A.C., BISTONI M.D.L.Á. 2001. Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study: Suquía River basin (Córdoba–Argentina). Water Research. Vol. 35(12) p. 2881–2894. DOI 10.1016/S0043-1354(00)00592-3.
  • YIDANA S.M., OPHORI D., BANOENG Y.B. 2008. Hydrochemical evaluation of the voltaian system. The Afram Plains area, Ghana. Journal of Environmental Management. Vol. 88(4) p. 697–707. DOI 10.1016/j.jenvman.2007.03.037.
  • ZGHIBI A., MERZOUGUI A., ZOUHIR L., TARHOUNI J. 2014. Understanding groundwater chemistry using multivariate statistics techniques to the study of contamination in the Korba unconfined aquifer system of Cap-Bon (North-East of Tunisia). Journal of African Earth Sciences. Vol. 89 p. 1–15. DOI 10.1016/j.jafrears-ci.2013.09.004.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1640619c-4c83-47ff-b1f6-ef7f91eaef69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.