Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:443/baztech/element/bwmeta1.element.baztech-163c75b7-0ec4-4f31-9710-f1f571f4c2dc

Czasopismo

Biocybernetics and Biomedical Engineering

Tytuł artykułu

Predictive geometrical model of the upper extremity of human fibula

Autorzy Tufegdzic, M.  Arsic, S.  Trajanovic, M. 
Treść / Zawartość http://www.ibib.waw.pl/pl/wydawnictwa/biocybernetics-and-biomedical-enginering-bbe/bbe-tomy http://www.journals.elsevier.com/biocybernetics-and-biomedical-engineering/
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Computer assisted preoperative planning in orthopedic surgery, as well as designing and manufacturing of personalized fixators, implants and scaffolds requires a good three-dimensional model of bone(s) of the treated patients. Existing methods that convert the Computer Tomography (CT) images into the polygonal three-dimensional models are time-consuming and inefficient. Therefore, we propose a predictive model that allows quick creation of three-dimensional (3D) surface model of a particular bone by measuring the relevant parameters from an X-ray or CT image. In this paper, we present the process of creating a predictive geometrical model using the case of proximal end of fibula as an example. The predictive model is built by defining the referential geometric entities that correspond to anatomical features, based on which appropriate points, axes, planes and curves are created. Using the method of linear and nonlinear regression with four different parameters, which can be measured from X-ray images or anterior-posterior projection of fibula at CT scans, the equations for X, Y and Z coordinates of the selected 168 points are obtained and their predictive values are calculated. These values are used for creating 3D surface model with the aim of two different methods: using loft function and converting these coordinates into point cloud. These models were compared and verified through analysis of deviations and distances between initial model and predictive models. The resulting 3D model has satisfactory accuracy, and the process of its building is much shorter.
Słowa kluczowe
PL model geometryczny   parametr   kość strzałkowa   model regresyjny  
EN geometrical model   parameter   human fibula   prediction   regression model  
Wydawca Nałęcz Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences
Elsevier
Czasopismo Biocybernetics and Biomedical Engineering
Rocznik 2016
Tom Vol. 36, no. 1
Strony 172--181
Opis fizyczny Bibliogr. 16 poz., rys., tab.
Twórcy
autor Tufegdzic, M.
  • Department for Mechanical Engineering, Machine-electrotechnical School, Cirila i Metodija 26, 37000 Krusevac, Serbia, miltufegdzic@gmail.com
autor Arsic, S.
autor Trajanovic, M.
Bibliografia
[1] Ritter L. 3D interactive segmentation – first applications for computer-aided craniofacial surgical planning. Technischen Universität München; 2005.
[2] Grey H. Gray's Anatomy: The Anatomical Basic of Clinical Practice. 40th ed. Elsevier; 2008.
[3] Radakovich M, Malone T. The superior tibiofibular joint: the forgotten joint. J Orthop Sports Phys Ther 1982;3:129–32.
[4] Radu C. 3D modeling and static finite element analysis of human tibia. Adv Eng 2008;2:99–104.
[5] Radu C, Roşca I. Some contributions to the design of osteosynthesis implants. Est J Eng 2009;15:121. http://dx.doi.org/10.3176/eng.2009.2.05.
[6] Mojtaba K, Ke BG, LePing L. Load response to articular cartilage and ligaments valus loading – a fibril-reinforced model of the knee. Ann Meet Am Soc 2010;415.
[7] Faustini MC, Neptune RR, Crawford RH. The quasi-static response of compliant prosthetic sockets for transtibial amputees using finite element methods. Med Eng Phys 2006;28:114–21. http://dx.doi.org/10.1016/j.medengphy.2005.04.019.
[8] Ozkan A, Mutlu I, Cirpici IY, Buluc L, Muezzinoglu US, Kisioglu Y. Effects of fibula and talus on the tibial stress distribution. EnginSoft Int Conf. 2009. pp. 1–4.
[9] Lethaus B, Kessler P, Boeckman R, Poort LJ, Tolba R. Reconstruction of a maxillary defect with a fibula graft and titanium mesh using CAD/CAM techniques. Head Face Med 2010;6:16. http://dx.doi.org/10.1186/1746-160X-6-16.
[10] Trajanović M, Tufegdžić M, Arsić S, Veselinović M, Vitković N. Reverse engineering of human fibula. 11th Int. Sci. Conf., Novi Sad, Serbia: Faculty of Technical Sciences, Novi Sad. 2012. pp. 527–30.
[11] Majstorovic V, Trajanovic M, Vitkovic N, Stojkovic M. Reverse engineering of human bones by using method of anatomical features. CIRP Ann Manuf Technol 2013;62:167–70. http://dx.doi.org/10.1016/j.cirp.2013.03.081.
[12] Stojkovic M, Milovanovic J, Vitkovic N, Trajanovic M, Arsic S. Analysis of femoral trochanters morphology based on geometrical model. J Sci Ind Res (India) 2012;71:210–6.
[13] Vitković N, Milovanović J, Korunović N, Trajanović M, Stojković M, Mišić D, et al. Software system for creation of human femur customized polygonal models. Comput Sci Inf Syst 2013;10:1473–97. http://dx.doi.org/10.2298/CSIS121004058V.
[14] Marciniec A, Miechowicz S. Stereolitography – the choice for medical modelling. Acta Bioeng Biomech 2004;6:13–24.
[15] Zhang S, Zhang K, Wang Y, Feng W, Wang B, Yu B. Using three-dimensional computational modeling to compare the geometrical fitness of two kinds of proximal femoral intramedullary nail for Chinese femur. Sci World J 2013;2013:6. http://dx.doi.org/10.1155/2013/978485.
[16] Tufegdžić M, Trajanović M, Vitković N, Arsić S. Reverse engineering of the human fibula by the anatomical features method. FACTA Univ Ser Mech Eng 2013;11:133–9.
Uwagi
PL Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-163c75b7-0ec4-4f31-9710-f1f571f4c2dc
Identyfikatory
DOI 10.1016/j.bbe.2015.12.003