Włodzimierz CIESIELCZYK, Anita KAMIŃSKA-PĘKALA

e-mail: wlodek@chemia.pk.edu.pl

Katedra Inżynierii Chemicznej i Procesowej, Wydział Inżynierii i Technologii Chemicznej, Politechnika Krakowska, Kraków

Modelowanie matematyczne kinetyki suszenia okresowego pszenicy w układzie fluidalnym

Wstęp

Suszenie wymaga dużych nakładów energetycznych, co przy względnie niskiej sprawności cieplnej suszarek stosowanych w praktyce przemysłowej, wymusza wręcz działania innowacyjne w kierunkach doskonalenia obliczeń procesowych oraz poszukiwania rozwiązań konstrukcji suszarek zapewniających wzrost efektywności energetycznej i sprawności aparatury.

W warunkach klimatycznych Polski około 40:60% ziarna zbieranego kombajnami wymaga obróbki pożniwnej, a zwłaszcza suszenia [*Mitek i in., 2006; Przybył i in., 2010*]. Istotne jest, aby podczas procesu zostały zachowane te właściwości, które są niezbędne przy dalszym wykorzystaniu produktów. W przypadku ziarna pszenicy przeznaczonego do celów spożywczych parametry suszenia powinny zapewnić zachowanie jakości produktu [*Przybył i in., 2010*]. W ramach wstępnych badań testowych określono wpływ metody suszenia na jakość pszenicy analizując wartości stosownych parametrów (ilość i jakość glutenu, zawartość białka). Wyniki badań uzasadniają suszenie pszenicy w układzie fluidalnym [*Kamińska-Pękala, 2014*].

Suszenie fluidalne zajmuje ważną pozycję wśród nowoczesnych metod suszarniczych. Jest to metoda łatwa w realizacji, cechująca się korzystnymi wskaźnikami technologicznymi oraz stosunkowo niskimi kosztami inwestycyjnymi i eksploatacyjnymi [*Mujumdar*, 1995; Strumiłło, 2006].

Złożony mechanizm suszenia oraz skomplikowane warunki hydrodynamiczne występujące w układach fluidalnych są przyczyną istotnych trudności, jakie napotyka się przy próbach uogólnionego matematycznego opisu kinetyki tego procesu [*Ciesielczyk i in., 2011*].

W niniejszym opracowaniu zaprezentowano model matematyczny kinetyki okresowego suszenia pszenicy w burzliwym, pęcherzykowym złożu fluidalnym. Zaproponowano również oryginalne rozwiązanie konstrukcji dystrybutora gazu zapewniającego efektywną fluidyzację materiałów zaliczanych do grupy D wg Geldarta. Omówiono także w oparciu o koncepcję tzw. uogólnionej krzywej suszenia metodę umożliwiającą minimalizację zakresu badań eksperymentalnych.

Model matematyczny procesu

Do charakterystyki hydrodynamicznej i kinetycznej analizowanego układu fluidalnego wykorzystano zmodyfikowany model złoża pęcherzykowego *Kunii-Levenspiela* [1991; *Ciesielczyk i in., 2011*]. Na podstawie wyników badań testowych [*Ciesielczyk, 2001*] stwierdzono, że ekwiwalentną średnicę pęcherza można wyznaczyć z zależności *Mori-Wena* [*Mori, 1975; Ciesielczyk, 2005*] na poziomie złoża odpowiadającym 40% początkowej wysokości warstwy materiału suszonego w aparacie.

Ilościowy opis kinetyki suszenia w okresowej suszarce fluidyzacyjnej wyróżnia strefę pęcherzy i strefę emulsji. Strefa emulsji jest środowiskiem dwufazowym zawierającym ziarna materiału suszonego i czynnik suszący. Pomiędzy obydwiema fazami następuje wymiana masy i ciepła. Dla strefy emulsji przyjęto model całkowitego wymieszania, zaś dla strefy pęcherzy - przepływ tłokowy. Założono pseudostacjonarność strefy pęcherzy, jednorodność rozkładu temperatury w całym ziarnie i adiabatyczność procesu. Statykę desorpcji przyjęto w oparciu o dane literaturowe [*Fyhr i in., 1999*]. Przedstawione opisy matematyczne uwzględniają pierwszy i drugi okres suszenia. W drugim okresie procesu wykorzystano pojęcie tzw. średniego stężenia \overline{X} przy parabolicznym profilu rozkładu wilgoci w ziarnach [*Ciesielczyk, 2006; Kamińska-Pękala, 2014*]. Sposób obliczania zarówno wielkości fizykochemicznych, jak i kinetycznych, charakteryzujących złoże, został szczegółowo omówiony i przedyskutowany w innych opracowaniach [*Ciesielczyk*, 2001; 2005; *Ciesielczyk i in.*, 2006; 2010; 2011]. Wartości parametrów modelu przyjętych w opisie ilościowym procesu, podobnie jak i hydrodynamika złoża były sukcesywnie liczone na każdym kroku czasowym całkowania numerycznego.

Dla pierwszego okresu suszenia równania modelu przedstawiają się następująco:

$$\frac{dY^{e}}{dt} = \frac{u_{0} - \delta u_{b}}{H_{mf} \varepsilon_{mf}} \left(Y_{f} - Y^{e}\right) - \frac{\delta \beta_{go}^{be}}{(1 - \delta) \varepsilon_{mf}} \int_{0}^{1} \left[Y^{e} - Y^{b}(z)\right] dz + (1a) + \frac{ak_{Y}}{\varepsilon_{mf} \rho_{gs}} \left(Y^{*} - Y^{e}\right)$$

$$\frac{dX}{dt} = -\frac{ak_Y}{(1 - \varepsilon_{mf})\rho_s} \left(Y^* - Y^e\right)$$
(1b)

$$\frac{dT_g^e}{dt} = \frac{u_0 - \delta u_b}{H_{mf} \varepsilon_{mf}} \left(T_f - T_g^e \right) + \frac{\delta \alpha_{qo}^{ve}}{(1 - \delta) \varepsilon_{mf} \rho_g c_g} \int_0^1 \left[T^b(z) - T_g^e \right] dz + -\frac{a\alpha_z}{\varepsilon_{mf} \rho_g c_g} \left(T_g^e - T_z \right)$$
(1c)

$$\frac{dT_z}{dt} = \frac{a\alpha_z}{(1 - \varepsilon_{mf})\rho_z c_z} \left(T_g^e - T_z\right) - \frac{ak_Y}{(1 - \varepsilon_{mf})\rho_z c_z} \left(Y^* - Y^e\right) \cdot r(T_z) \quad (1d)$$

Drugi okres procesu opisany jest równaniami:

$$\frac{dY^{e}}{dt} = \frac{u_{0} - \delta u_{b}}{H_{mf} \varepsilon_{mf}} \left(Y_{f} - Y^{e}\right) - \frac{\delta \beta_{go}^{be}}{(1 - \delta) \varepsilon_{mf}} \int_{0}^{1} \left[Y^{e} - Y^{b}(z)\right] dz + (2a) + \frac{ak_{Y}}{\varepsilon_{mf} \rho_{gs}} \left(Y_{s} - Y^{e}\right)$$

$$\frac{dX}{dt} = \frac{5aD_s}{(1 - \varepsilon_{mf})r_z} \left(X_s - \overline{X} \right) = \frac{5aD_s}{(1 - \varepsilon_{mf})r_z} \left(KY_s - \overline{X} \right)$$
(2b)

$$r_{z}k_{Y}\left(Y_{s}-Y^{e}\right)=5D_{s}\rho_{s}\left(\overline{X}-KY_{s}\right)$$
(2c)

$$\frac{dT_{g}^{e}}{dt} = \frac{u_{0} - \delta u_{b}}{H_{mf} \varepsilon_{mf}} \left(T_{f} - T_{g}^{e}\right) + \frac{\delta \alpha_{q_{0}}^{be}}{(1 - \delta) \varepsilon_{mf} \rho_{g} c_{g}} \int_{0}^{1} \left[T^{b}(z) - T_{g}^{e}\right] dz + -\frac{a \alpha_{z}}{\varepsilon_{mf} \rho_{g} c_{g}} \left(T_{g}^{e} - T_{z}\right)$$
(2d)

$$\frac{dT_z}{dt} = \frac{a\alpha_z}{(1 - \varepsilon_{mf})\rho_z c_z} \left(T_g^e - T_z\right) + \frac{5aD_s}{(1 - \varepsilon_{mf})\rho_z c_z r_z} \left(KY_s - \overline{X}\right) \cdot r(T_z)$$
(2e)

Procedury opracowanego modelu matematycznego kinetyki okresowego suszenia pszenicy w pęcherzykowym złożu fluidalnym pozwalają na otrzymanie równań krzywych kinetycznych w tym uogólnionej krzywej suszenia [*Ciesielczyk, 2005; Ciesielczyk i in.* 2010; Kamińska-Pękala, 2014].

Do całkowania równań modelu stosowano w pracy algorytm *Geara* [1971]. Okazuje się bowiem, że układy równań (1) i (2) charakteryzują się dużą wartością liczby sztywności, rzędu od 10⁶ do 10⁸ [Kamińska-Pękala, 2014]. Wspomniany algorytm cechuje się między innymi zmiennym krokiem całkowania i zmiennym rzędem metody.

Badania doświadczalne

Badania testowe mające na celu wyznaczenie krzywych kinetycznych dla analizowanego materiału prowadzono na instalacji doświadczalnej przedstawionej schematycznie na rys. 1. Zasadniczym elementem instalacji była okresowa suszarka fluidyzacyjna o średnicy podstawy D = 150 mm, wyposażona w oryginalną konstrukcję dystrybutora gazu (rys. 1b), co pozwala na efektywne suszenie materiałów zaliczanych do grupy D wg klasyfikacji Geldarta. Zastosowana konstrukcja dystrybutora gazu (Rys.1b) generuje intensywne warunki hydrodynamiczne w układzie, zapobiegając klasycznym zakłóceniom. Istota rozwiązania [Ciesielczyk i in., 2012; Kamińska i in., 2012; Kamińska-Pękala i in., 2013] polega na zainstalowaniu, na styku komory suszenia i komory dystrybutora specjalnego rusztu ze stożkiem. Pole powierzchni bocznej stożka rusztu równe jest połowie dolnej powierzchni przekroju poprzecznego komory suszenia. Stożek - podobnie jak powierzchnia pozioma rusztu - wykonany jest z blachy perforowanej. Przewód doprowadzający czynnik fluidyzujący umieszczony jest w komorze dystrybutora - 3, w osi aparatu, w ten sposób, że otwór wylotowy zwrócony jest w kierunku podstawy suszarki ukształtowanej w formie stożka.

Rodzaj i jakość fluidyzacji pszenicy sprawdzono stosując klasyczne wytyczne *Geldarta* [1973]. Ustalono, że pszenica zalicza się do grupy D wg *Geldarta*, a fluidyzacja powinna przebiegać w zakresie odpowiadającym burzliwemu złożu pęcherzykowemu [*Ciesielczyk i in., 2006; Kamińska-Pękala, 2014*]. Oprzyrządowanie instalacji badawczej pozwalało na wyznaczenie krzywych kinetycznych.

Rys. 1. Schemat stanowiska badawczego: a) zasadnicze elementy;
1 – suszarka, 2 – cyklon, 3 – dystrybutor gazu, 4 – nagrzewnica,
5 – zawór, 6 – zwężka, 7 – bocznik, 8 – wentylator, 9 – zasyp, 10 – ruszt, b) przekrój dystrybutora gazu

Wyniki i dyskusja

Podstawą weryfikacji doświadczalnej ilościowego opisu kinetyki suszenia są krzywe suszenia $X = f_1(t)$ i krzywe temperaturowe $T_z = f_2(t)$ pszenicy. Dyskusję dotyczącą weryfikacji eksperymentalnej modelu przedstawiono szczegółowo w odniesieniu do suszenia ziarna pszenicy o średnicy ziarna $d_z = 3,67 \cdot 10^{-3}$ m. W niniejszej pracy zamieszczono jedynie przykładowe, reprezentatywne wyniki takiej analizy w postaci krzywych kinetycznych suszenia. Na rys. 2 przedstawiono krzywe suszenia, a na rys. 3 krzywe temperaturowe dla pszenicy, uzyskane z obliczeń symulacyjnych oraz sporządzone na podstawie eksperymentów.

Wyniki teoretyczne porównano z danymi eksperymentalnymi otrzymanymi przy następujących wartościach parametrów procesowych: wysokość początkowa złoża $H_{mf} = 0,15$ m, temperatura powietrza włotowego $T_f = 323$ K oraz prędkość powietrza $u_0 = 1,828$ m/s (liczba fluidyzacji = 1,83). Wyniki teoretyczne są reprezentowane za pomocą linii ciągłych, zaś dane eksperymentalne oznaczono symbolami punktowymi.

Ze wstępnej oceny danych zamieszczonych na rys. 2 i 3 wynika, że krzywe teoretyczne, dostatecznie dobrze korelują z danymi doświadczalnymi, przewidywania teoretyczne pokrywają się z danymi doświadczalnymi zarówno jakościowo, jak i dostatecznie dokładnie ilościowo.

Równolegle z dalszym rozwojem prac teoretycznych prowadzi się intensywne działania w kierunku unowocześnienia, unifikacji i normalizacji metod półempirycznych. Koncepcja uogólnienia krzywych suszenia wykorzystująca stosowaną procesowej metodę zmiany układu współrzędnych pozwala na otrzymanie krzywej suszenia fluidalnego danego materiału w warunkach projektowanych przy minimalizacji zakresu niezbędnych badań eksperymentalnych. Należy podkreślić, że uzasadnieniem dla stosowania metod półempirycznych w procedurach projektowych jest często niedostępność danych równowagowych i szeregu współczynników przenoszenia dla substancji występujących w praktyce przemysłowej.

Rys. 2. Krzywa suszenia $X = f_1(t)$ ($T = 50^{\circ}$ C, $u_0 = 1,828$ m/s, liczba fluidyzacji = 1,83)

Wiadomo także, że eksperymentalne dane kinetyczne otrzymuje się łatwiej niż dane doświadczalne dotyczące współczynników przenoszenia, a jednocześnie uwzględnia się rzeczywiste charakterystyki fizykochemiczne, strukturalno – mechaniczne i inne, trudne do ilościowego ujęcia cechy dotyczące materiałów suszonych.

Rys. 3. Krzywa temperaturowa $T_z = f_2(t)$ ($T = 50^{\circ}$ C, $u_0 = 1,828$ m/s, liczba fluidyzacji = 1,83)

Uogólnioną krzywą suszenia można przedstawić w bezwymiarowym układzie współrzędnych $(X/X_0) = f[(N \cdot t)/X_0]$ [*Ciesielczyk,* 2005; *Ciesielczyk i in., 2010; Ciesielczyk i in. 2011*]. Procedury opracowanego modelu matematycznego kinetyki okresowego suszenia pszenicy w złożu fluidalnym pozwalają na otrzymanie uogólnionej krzywej suszenia (Rys.4) [*Kamińska-Pękala, 2014*].

Rys. 4. Uogólniona krzywa suszenia dla pszenicy

Nt/X₀

Podsumowanie i wnioski

Przedstawiono model matematyczny kinetyki suszenia okresowego ciał stałych w burzliwym, pęcherzykowym złożu fluidalnym.

Dokonano weryfikacji doświadczalnej modelu, porównując wyniki symulacyjnych obliczeń numerycznych z danymi eksperymentalnymi. Potwierdzono eksperymentalnie, że przedstawiony model można stosować do obliczeń procesu suszenia materiałów zaliczanych do grupy D wg klasyfikacji *Geldarta*, wykazujących obydwa charakterystyczne okresy procesu.

Do weryfikacji modelu teoretycznego wykorzystano także koncepcję uogólnionej krzywej suszenia, tworząc w ten sposób więź między analitycznymi i półempirycznymi metodami analizy suszenia okresowego w złożach fluidalnych..

Zaproponowano oryginalne rozwiązanie konstrukcji dystrybutora gazu zapewniającego efektywną fluidyzację materiałów zaliczanych do grupy D wg *Geldarta*.

OZNACZENIA

- *a* powierzchnia właściwa, m^{-1}
- c ciepło właściwe, kJ·kg⁻¹·K⁻¹
- d_z średnica cząstek, m
- D_s efektywny współczynnik dyfuzji, m²·s⁻¹
- g przyśpieszenie ziemskie, m·s⁻¹
- H wysokość złoża, m.
- k_Y współczynnik wnikania masy od ziaren ciała stałego do gazu, kg·m^{-2} \cdot {\rm s}^{-1}
- *K* stała równowagi
- N szybkość suszenia w I okresie, kg \cdot kg⁻¹ \cdot s⁻¹
- r_z promień ziarna ciała stałego, m
- r ciepło parowania, kJ·kg⁻¹
- t czas, s
- T temperatura, K
- u_0 prędkość gazu, odniesiona do swobodnego przekroju kolumny, m·s⁻¹
- u_b prędkość pęcherzy w złożu fluidalnym, m·s⁻¹
- u_{mf} prędkość minimum fluidyzacji, m·s⁻¹
- X zawartość wilgoci w ziarnie, kg·kg⁻¹
- \overline{X} średnia zawartość wilgoci w ziarnie, kg·kg⁻¹
- Y bezwzględna wilgotność powietrza, kg·kg⁻¹
- z bezwymiarowa współrzędna wysokości w złożu
- α współczynnik wnikania ciepła, kW·m⁻²·K⁻¹
- α_q^{ij} współczynnik wymiany ciepła między strefami i, j, kW·m⁻³·K⁻¹
- β_{g}^{ij} współczynnik wymiany gazu między strefami i, j, s⁻¹

- δ objętościowy udział pęcherzy w złożu
- \mathcal{E} porowatość
- ρ gęstość, kg·m⁻³

INDEKSY GÓRNE

- b, e dotyczy strefy pęcherzy, śladów i chmur oraz strefy emulsji
- dotyczy wartości równowagowej

INDEKSY DOLNE

- b dotyczy pęcherza
- f dotyczy strumienia zasilającego
- g gaz
- kr krytyczna
- *mf* minimum fluidyzacji
- 0 wartość początkowa
- r równowagowa
- s dotyczy powierzchni ciała stałego
- *t* stan zawieszenia
- z dotyczy ziarna ciała stałego

LITERATURA

- Ciesielczyk W., (2001). Model matematyczny kinetyki suszenia okresowego w złożu fluidalnym. *Inż. Chem. Proc.* 22, 343-348
- Ciesielczyk W., (2005). Określenie kinetyki suszenia fluidalnego przy minimalizacji zakresu badań laboratoryjnych. Przem. Chem., 84(2), 273-280
- Ciesielczyk W., Iwanowski J., (2006). Analysis of fluidized bed drying kinetics on the base of interphase mass transfer coefficient. *Drying Technol.*, 24, 1153–1157. DOI: 10.1080/07373930600778429
- Ciesielczyk W., Iwanowski J., Kamińska A., (2010). Powiększanie skali suszenia fluidalngo w oparciu o koncepcję uogólnionej krzywej kinetycznej. Inż. Ap. Chem. 49(1), 27-28
- Ciesielczyk W., Iwanowski J., Kamińska A., (2011). Obliczenia procesowe suszenia fluidalnego na podstawie koncepcji uogólnionej krzywej kinetycznej. Przem. Chem. 90(7), 1304-1308
- Ciesielczyk W., Kamińska A., Skoneczna J., (2012). Suszarka fluidyzacyjna do suszenia materiałów polidyspersyjnych, zwłaszcza rozdrobnionej biomasy. Ochrona prawna od 08.02.2010 r. Opis ochronny wzoru użytkowego PL 65937 Y1, 31.05.2012 WUP
- Fyhr Ch., Kemp I.C., (1999). Mathematical modeling of batch and continuous well-mixed fluidized bed dryers. *Chem. Eng. Process.* 38, 11-18. DOI: 10.1016/S0255-2701(98)00064-6
- Gear C.W., (1971). Algorithm 407. DIFSUB for solution of ordinary differen tial equations. *Comm. ACM DL*, 14, 185-187. DOI: 10.1145/ 362566.362573
- Geldart D., (1973). Types of gas fluidization. *Powder Technol.*, 7 (5), 285-291. DOI: 10.1016/0032-5910(73)80037-3
- Kamińska A. Ciesielczyk W., (2012). Konstrukcja dystrybutora gazu, a efektywność suszenia fluidalnego wybranych rodzajów rozdrobnionej biomasy. *Inż. Ap. Chem.* 51(6), 326-327
- Kamińska-Pękala A, Ciesielczyk W., (2013). Efektywna fluidyzacja materiałów z grupy D klasyfikacji Geldarta. Inż. Ap. Chem. 51(6), 537-538
- Kamińska-Pękala A, (2014). Analiza teoretyczna i eksperymentalna suszenia fluidalnego wybranych produktów rolnych. Rozprawa doktorska, Politechnika Krakowska, Kraków
- Kunii D., Levenspiel O., (1991). Fluidization engineering, Butterworth-Heinemann, Boston
- Mitek M., Słowiński M., (2006) Wybrane zagadnienia z technologii żywności, Wyd. SGGW, Warszawa
- Mori S., Wen C.Y.,(1975). Estimation of bubble diameter in gaseous fluidized beds. AIChE J. 21, 109-115. DOI: 10.1002/aic.690210114
- Mujumdar, A.S., (1995) Handbook of industrial drying ; Marcel Dekker, New York
- Przybył J., Sęk T., (2010) Zbiór zbóż i roślin podobnych technologicznie, Wyd. Uniwersytetu Przyrodniczego, Poznań
- Strumiłło, C. (2006). Perspectives on developments in drying. Drying Technol., 24(9), 1059-1068. DOI: 10.1080/07373930600778056