Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Analiza cyberfizyczno-społeczno-intencjonalnej Siły Roboczej 4.0
Języki publikacji
Abstrakty
The widespread application of Industry 4.0 technologies relating to social robotics, AI, the Internet of Things (IoT), ubiquitous computing, and advanced human-computer interfaces is giving rise to a growing range of “cyber-physical” entities. By building on established definitions of such entities, this text formulates a novel conceptual framework for understanding the emerging Workforce 4.0 as a specialized type of “cyber-physical-social-intentional system”. Attention is given to the heterogeneous agency, functional decentralization, technological posthumanization, and planned architectures or spontaneously self-organizing topologies manifested by Workforce 4.0. It is shown how such a workforce is situated within the context of cyber-physical space, a cyber-physical organization, cyber-physical ecosystems, a cyber-physical society, and the larger cyber-physical world.
Rosnące zastosowanie technologii Przemysłu 4.0, związanych z robotyką społeczną, sztuczną inteligencją, Internetem rzeczy, przetwarzaniem rozpowszechnionym i zaawansowanymi interfejsami człowiek - komputer, wywołuje powstawanie coraz większej liczby „cyberfizycznych” jednostek. Opierając się na ustalonych definicjach takich jednostek, niniejszy tekst proponuje nowe ramy koncepcyjne wyłaniającej się Siły Roboczej 4.0 jako szczególnego rodzaju „systemu cyberfizyczno-społeczno-intencjonalnego”. Zwraca się uwagę na niejednorodność sprawczości, posthumanizację technologiczną, funkcjonalną decentralizację i celowo zaplanowane architektury albo spontanicznie samoorganizujące się topologie manifestowane przez Siłę Roboczą 4.0. Pokazany jest sposób, w jaki taka siła robocza działa w kontekście przestrzeni cyberfizycznej, organizacji cyberfizycznej, ekosystemów cyberfizycznych, społeczeństwa cyberfizycznego i szerszego cyberfizycznego świata.
Czasopismo
Rocznik
Tom
Strony
15--26
Opis fizyczny
Bibliogr. 51 poz., rys.
Twórcy
autor
- Anglia Ruskin University, Lord Ashcroft International Business School
Bibliografia
- [1] Benedict M., Schlieter H., 2015, Governance Guidelines for Digital Healthcare Ecosystems, [in:] D. Hayn, G. Schreier, E. Ammenwerth, A. Hörbst (eds.), eHealth2015 – Health Informatics Meets eHealth. Innovative Health Perspectives: Personalized Health, ISO Press, Amsterdam, pp. 233-240.
- [2] Bryman A., 2016, Social Research Methods, Oxford University Press, Oxford.
- [3] Burgio P., Alvarez C., Ayguadé E., Filgueras A., Jimenez-Gonzalez D., Martorell X., Navarro N., Giorgi R., 2016, Simulating Next-Generation Cyber-Physical Computing Platforms, “Ada User Journal”, Vol. 37, No. 1, pp. 59-63.
- [4] Creswell J.W., Creswell J.D., 2018, Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, SAGE Publications, Los Angeles.
- [5] Deleuze G., Guattari F., 1987, A Thousand Plateaus, University of Minnesota Press, Minneapolis.
- [6] Dobbs J., 2015, Toward a Streamlined Software Tool Chain for Cyber-Physical Buildings (doctoral dissertation in Mechanical Engineering), Cornell University, Ithaca.
- [7] Fitzgerald J., Gamble C., Payne R., Lam, B., 2017, Exploring the Cyber‐Physical Design Space, “INCOSE International Symposium”, Vol. 27, No. 1, pp. 371-385.
- [8] Ganti R.K., Tsai Y.E., Abdelzaher T.F., 2008, Senseworld: Towards Cyber-Physical Social Networks, [in:] Proceedings of the 7th International Conference on Information Processing in Sensor Networks, IEEE Computer Society Press, Washington, pp. 563-564.
- [9] Gill H., 2008, From Vision to Reality: Cyber-Physical Systems (presentation), [in:] HCSS National Workshop on New Research Directions for High Confidence Transportation CPS: Automotive, Aviation, and Rail, NITRD, National Science Foundation, 18-20 November, Washington, pp. 1-29.
- [10] Gladden M.E., 2017, Strategic Management Instruments for Cyber-Physical Organizations: Technological Posthumanization as a Driver of Strategic Innovation, “International Journal of Contemporary Management”, Vol. 16, No. 3, pp. 139-155.
- [11] Gladden M.E., 2018, Sapient Circuits and Digitalized Flesh: The Organization as Locus of Technological Posthumanization, Defragmenter Media, Indianapolis.
- [12] Gladden M.E., 2019, Who Will Be the Members of Society 5.0? Towards an Anthropology of Technologically Posthumanized Future Societies, “Social Sciences”, Vol. 8, No. 5.
- [13] Guédria W., Lamine E., Pingaud H., 2014, Health Systems Interoperability: Analysis and Comparison, [in:] MOSIM 2014, 10ème Conférence Francophone de Modélisation, Optimisation et Simulation, November, Nancy, France.
- [14] Huang H., Davis K., 2018, Extracting Substation Cyber-Physical Architecture Through Intelligent Electronic Devices’ Data, [in:] The 2018 IEEE Texas Power and Energy Conference (TPEC), IEEE, Piscataway Township, pp. 1-6.
- [15] Ingarden R., 1974, Über die kausale Struktur der realen Welt: Der Streit um die Existenz der Welt III, Max Niemeyer Verlag, Tübingen.
- [16] Ingarden R., 1987, O odpowiedzialności i jej podstawach ontycznych, [in:] Ingarden R., Książeczka o człowieku, Wydawnictwo Literackie, Kraków, pp. 71-169.
- [17] Ivancevic V.G., Reid D.J., Pilling M.J., 2017, Mathematics of Autonomy: Mathematical Methods for Cyber-Physical-Cognitive Systems, World Scientific Publishing, Singapore.
- [18] Lincoln Y.S., Guba E.G., 1985, Naturalistic Inquiry, Sage, Beverly Hills.
- [19] Liu Z., Yang D., Wen D., Zhang W., Mao W., 2011, Cyber-Physical-Social Systems for Command and Control, “IEEE Intelligent Systems”, Vol. 26, No. 4, pp. 92-96.
- [20] Marashi K., Sarvestani S.S., Hurson A.R., 2018, Consideration of Cyber-Physical Interdependencies in Reliability Modeling of Smart Grids, “IEEE Transactions on Sustainable Computing”, Vol. 3, No. 2, pp. 73-83.
- [21] Marrella A., Mecella M., Halapuu P., Sardina S., 2015, Automated Process Adaptation in Cyber-Physical Domains with the SmartPM System (Short Paper), [in:] 2015 IEEE 8th International Conference on Service-Oriented Computing and Applications (SOCA), IEEE, 19-21 October, Rome, pp. 59-64.
- [22] McGrew W., Dandass Y., 2009, Engineering FUTURE CYBER-PHYSICAL ENERGY SYSTEMS: Challenges, Research Needs, and Roadmap, [in:] Power Symposium. North American. 41st 2009 (NAPS 2009), IEEE, 4-6 October, Starkville, pp. 1-6.
- [23] Minchev Z., Dukov G., 2016, Emerging Hybrid Threats Modelling & Exploration in the New Mixed Cyber-Physical Reality, [in:] Proceedings of the Eighth International Conference on Business Information Security, BISEC, Belgrade, pp. 13-17.
- [24] Moldovan D., Copil G., Dustdar S., 2018, Elastic Systems: Towards Cyber-Physical Ecosystems of People, Processes, And Things, “Computer Standards & Interfaces”, No. 57, pp. 76-82.
- [25] Monostori L., 2014, Cyber-Physical Production Systems: Roots, Expectations and R&D Challenges, “Procedia CIRP”, No. 17, pp. 9-13.
- [26] Mordecai Y., Chapman C., Dori D., 2013, Conceptual Modelling of Physical-Informatical Essence Duality of Cyber-Physical Entities, IEEE International Conference on Systems, Man, and Cybernetics, 13-16 October, IEEE, Manchester.
- [27] Morris T.H., Srivastava A.K., Reaves B., Pavurapu K., Abdelwahed S., Vaughn R., Ning H., Liu H., 2015, Cyber-Physical-Social-Thinking Space Based Science and Technology Framework for the Internet of Things, “Science China Information Sciences”, Vol. 58, No. 3, pp. 1-19.
- [28] Park Y.L., Young D., Chen B.R., Wood R.J., Nagpal R., Goldfield, E.C., 2013, Networked Bio-Inspired Modules for Sensorimotor Control of Wearable Cyber-Physical Devices, [in:] 2013 International Conference on Computing, Networking and Communications (ICNC), IEEE, 28-31 January, San Diego, pp. 92-96.
- [29] Patel C., Lei Y., Liu L., Vernica R., Fan J., Short B., Liu J., Simske, S.J., 2017, Learning in the 21st Century Cyber-Physical Age, “APSIPA Transactions on Signal and Information Processing”, No. 6.
- [30] Petrolo R., Loscri V., Mitton N., 2016, Cyber-Physical Objects as Key Elements for a Smart Cyber-City, [in:] Management of Cyber Physical Objects in the Future Internet of Things, Springer, Cham, pp. 31-49.
- [31] Rasmussen T.B., Yang G., Nielsen A.H., Dong Z., 2018, Effects of Centralized and Local PV Plant Control for Voltage Regulation in LV Feeder Based on Cyber-Physical Simulations, “Journal of Modern Power Systems and Clean Energy”, Vol. 6, No. 5, pp. 979-991.
- [32] Ren Y., Tomko M., Salim F.D., Chan J., Sanderson M., 2018, Understanding the Predictability of User Demographics from Cyber-Physical-Social Behaviours in Indoor Retail Spaces, “EPJ Data Science”, Vol. 7, No. 1.
- [33] Saldivar A.A.F., Li Y., Chen W.N., Zhan Z.H., Zhang J., Chen L.Y., 2015, Industry 4.0 with Cyber-Physical Integration: A Design and Manufacture Perspective, [in:] ICAC ’15: 21st International Conference on Automation and Computing, IEEE, 11-12 September, Glasgow, pp. 1-6.
- [34] Seiger R., Keller C., Niebling F., Schlegel T., 2015, Modelling complex and flexible processes for smart cyber-physical environments, “Journal of Computational Science”, No. 10, pp. 137-148.
- [35] Shou L., Wu S., 2013, Supporting Efficient Social Media Search in Cyber-Physical Web, “IEEE Data Eng. Bull.”, Vol. 36, No. 3, pp. 83-90.
- [36] Smirnov A., Sandkuhl K., Shilov N., 2013, Multilevel Self-Organisation of Cyber-Physical Networks: Synergic Approach, “International Journal of Integrated Supply Management”, Vol. 8, No. 1-3, pp. 90-106.
- [37] Sokolowski R., 2000, Introduction to Phenomenology, Cambridge University Press, Cambridge.
- [38] Teilhard de Chardin P., SJ, 1966, The Vision of the Past, Harper and Row, New York.
- [39] Thompson B., Harang, R., 2017, Identifying Key Cyber-Physical Terrain, [in:] IWSPA ’17: Proceedings of the 3rd ACM on International Workshop on Security and Privacy Analytics, ACM, New York, pp. 23-28.
- [40] Tsigkanos C., Kehrer T., Ghezzi C., 2016, Architecting Dynamic Cyber-Physical Spaces, “Computing”, Vol. 98, No. 10, pp. 1011-1040.
- [41] Vroom R.W., Horváth I., 2014, Cyber-Physical Augmentation: An Exploration, [in:] Tools and Methods of Competitive Engineering. Digital Proceedings of the 10th International Symposium on Tools and Methods of Competitive Engineering, TMCE, Budapest, Hungary, 19-23 May, Delft University of Technology, Delft.
- [42] Wan J., Chen M., Leung V.C., 2014, M2M Communications in the Cyber-Physical World, “Machine-to-Machine Communications: Architectures, Technology, Standards, and Applications”, No. 1.
- [43] Wang F.Y., Zhang J.J., Wang X., 2018, Parallel Intelligence: Toward Lifelong and Eternal Developmental AI and Learning in Cyber-Physical-Social Spaces, “Frontiers of Computer Science”, No. 12, pp. 401-405.
- [44] Wang H., Li Q., Yi F., Li Z., Sun L., 2016, Influential Spatial Facility Prediction Over Large Scale Cyber-Physical Vehicles in Smart City, “EURASIP Journal on Wireless Communications and Networking”, No. 1.
- [45] Wang H., Zheng Z., 2014, Collective Self-Adaptive Software Architecture Specification: Understanding Uncertainty in Cyber-Physical Convergence, “Journal of Computers”, Vol. 9, No. 4, pp. 802-811.
- [46] Wang Y., Vuran M.C., Goddard S., 2008, Cyber-Physical Systems in Industrial Process Control, “ACM SIGBED Review”, Vol. 5, No. 1, pp. 1-2.
- [47] Weaver G.A., Cheh C., Rogers E.J., Sanders W.H., Gammel D., 2013, Toward a Cyber-Physical Topology Language: Applications to NERC CIP Audit, [in:] SEGS ’13: Proceedings of the First ACM Workshop on Smart Energy Grid Security, ACM, New York, pp. 93-104.
- [48] Xiao-Le W., Hong-Bin H., Su D., Li-Na C., 2012, A Service-Oriented Architecture Framework for Cyber-Physical Systems, “Recent Advances in Computer Science and Information Engineering”, Vol. 126, No. 3, pp. 671-676.
- [49] Yardley T., Berthier R., Nicol D., Sanders W.H., 2013, Smart Grid Protocol Testing Through Cyber-Physical Testbeds, [in:] 2013 IEEE PES Innovative Smart Grid Technologies (ISGT), IEEE, Piscataway Township, pp. 1-6.
- [50] Yu Z., Ouyang J., Li S., Peng X., 2017, Formal Modeling and Control of Cyber-Physical Manufacturing Systems, “Advances in Mechanical Engineering”, Vol. 9, No. 10, pp. 1-12.
- [51] Zhuge H., 2010, Cyber Physical Society, [in:] SKG ’10: Proceedings of the 2010 Sixth International Conference on Semantics, Knowledge and Grids, IEEE Computer Society, Washington, pp. 1-8.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16320d88-6955-482f-9d57-e070bda7a8f5