Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Tar formation is a significant issue during biomass gasification. Catalytic removal of tars with the use of nickel cata-lyst allows to obtain high conversion rate but coke formation on catalysts surface lead to its deactivation. Toluene decomposition as a tar imitator was studied in gliding discharge plasma-catalytic system with the use of 5%, 10% and 15% by weight Ni and NiO catalyst on Al2O3 (α-Al2O3) and Peshiney (γ-Al2O3) carrier in gas composition similar to the gas after biomass pyrolysis. The optimal concentration of nickel was identified to be 10% by weight on Al2O3. It was stable in all studiedinitial toluene concentrations, discharge power while C7H8 conversion rate remained high – up to 82%. During the process, nickel catalysts were deactivated by sooth formation on the surface. On catalysts surface, toluene decomposition products were identified including benzyl alcohol and 3-hexen-2-one.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
24--29
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Warsaw University of Technology, 3 Noakowskiego Street, 00-664 Warsaw, Poland
autor
- Warsaw University of Technology, 3 Noakowskiego Street, 00-664 Warsaw, Poland
autor
- Warsaw University of Technology, 3 Noakowskiego Street, 00-664 Warsaw, Poland
autor
- Warsaw University of Technology, 3 Noakowskiego Street, 00-664 Warsaw, Poland
Bibliografia
- 1. Wang, Z., Bui, Q., Zhang, B. & Pham, T.L.H. (2020). Biomass energy production and its impacts on the ecological footprint: An investigation of the G7 countries. Sci. Total Environ. 743, 140741. DOI: 10.1016/j.scitotenv.2020.140741.
- 2. Shahabuddin, M., Alam, M.T., Krishna, B.B., Bhaskar, T. & Perkins, G. (2020). A review on the production of renewable aviation fuels from the gasification of biomass and residual wastes. Biores. Technol. 312, 123596. DOI: 10.1016/j.biortech.2020.123596.
- 3. Xiang, Y., Cai, L., Guan, Y., Liu, W., Cheng, Z. & Liu, Z. (2020). Study on the effect of gasification agents on the integrated system of biomass gasification combined cycle and oxy-fuel combustion. Energy. 206, 118131. DOI: 10.1016/j.energy.2020.118131.
- 4. Marculescu, C., Cenuşă, V. & Alexe, F. (2016). Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines. Waste Manage. 47(A), 133–140. DOI: 10.1016/j.wasman.2015.06.043.
- 5. Hernández, J.J., Lapuerta, M. & Barba, J. (2015). Effect of partial replacement of diesel or biodiesel with gas from biomass gasification in a diesel engine. Energy. 89, 148–157. DOI: 10.1016/j.energy.2015.07.050.
- 6. Caliandro, P., Tock, L., Ensinas, A.V. & Marechal, F. (2014). Thermo-economic optimization of a Solid Oxide Fuel Cell – Gas turbine system fuelled with gasified lignocellulosic biomass. Energy Convers. Manag. 85, 764–773. DOI: 10.1016/j.enconman.2014.02.009.
- 7. Di Carlo, A., Borello, D., Sisinni, M., Savuto, E., Venturini, P., Bocci, E. & Kuramoto, K. (2015). Reforming of tar contained in a raw fuel gas from biomass gasification using nickel-mayenite catalyst. Int. J. Hydrog. Energy. 40(30), 9088–9095. DOI: 10.1016/j.ijhydene.2015.05.128.
- 8. Kinoshita, C.M., Wang, Y. & Zhou, J. (1994). Tar formation under different biomass gasification conditions. J. Anal. Appl. Pyrolysis, 29(2), 169–181. DOI: 10.1016/0165-2370(94)00796-9.
- 9. Thapa, S., Bho, P.R., Kumar, A. & Huhnke, R.L. (2017). Effects of Syngas Cooling and Biomass Filter Medium on Tar Removal. Energies. 10(3), 349. DOI: 10.3390/en10030349.
- 10. Asadullah, M. (2014). Biomass gasification gas cleaning for downstream applications: A comparative critical review, Renew. Sust. Energ. Rev. 40, 118–132. DOI: 10.1016/j.rser.2014.07.132.
- 11. Shen, Y. & Yoshikawa, K. (2013). Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—A review. Renew. Sust. Energ. Rev. 21, 371–392. DOI: 10.1016/j.rser.2012.12.062.
- 12. Yu, H., Liu, Y., Liu, J. & Chen, D. (2019). High catalytic performance of an innovative Ni/magnesium slag catalyst for the syngas production and tar removal from biomass pyrolysis. Fuel. 254, 115622. DOI: 10.1016/j.fuel.2019.115622.
- 13. Laprune, D., Farrusseng, D., Schuurman, Y., Meunier, F.C., Pieterse, J.A.Z., Steele, A.M. & Thorpe, S. (2018). Effects of H2S and phenanthrene on the activity of Ni and Rh-based catalysts for the reforming of a simulated biomass-derived producer gas. Appl. Catal. B. 221, 206–214.DOI: 10.1016/j.apcatb.2017.09.015.
- 14. Liu, Y., Song, J., Diao, X., Liu, L. & Sun, Y. (2020). Removal of tar derived from biomass gasification via synergy of non-thermal plasma and catalysis. Sci. Total Environ. 721, 137671. DOI: 10.1016/j.scitotenv.2020.137671.
- 15. Wanga, Y., Yangb, H. & Tu, X. (2019). Plasma reforming of naphthalene as a tar model compound of biomass gasification. Energy Convers. Manag. 187, 593–604. DOI: 10.1016/j.enconman.2019.02.075.
- 16. Liu, L., Liu, Y., Song, J., Ahmad, S., Liang, J. & Sun, Y. (2019). Plasma-enhanced steam reforming of different model tar compounds over Ni-based fusion catalysts. J. Hazard. Mater. 377, 24–33. DOI: 10.1016/j.jhazmat.2019.05.019.
- 17. Tao, K., Ohta, N., Liu, G., Yoneyama, Y., Wang, T. & Tsubaki, N. (2013). Plasma enhanced catalytic reforming of biomass tar model compound to syngas. Fuel. 104, 53–57. DOI: 10.1016/j.fuel.2010.05.044.
- 18. Liu, L., Wang, Q., Ahmad, S., Yang, X., Ji, M. & Sun, Y. (2018). Steam reforming of toluene as model biomass tar to H2-rich syngas in a DBD plasma-catalytic system. J. Energy Inst. 91(6), 927–939. DOI: 10.1016/j.joei.2017.09.003.
- 19. Młotek, M., Woroszył, J., Ulejczyk, B. & Krawczyk, K. (2019). Coupled Plasma-Catalytic System with Rang 19PR Catalyst for Conversion of Tar. Sci. Rep. 9, 13562. DOI: 10.1038/s41598-019-49959-4.
- 20. Młotek, M., Ulejczyk, B., Woroszył, J. & Krawczyk, K. (2020). Decomposition of Toluene in Coupled Plasma-Catalytic System. Ind. Eng. Chem. Res. 59(10), 4239–4244. DOI: 10.1021/acs.iecr.9b04330.
- 21. Lu, P., Huang, Q., Bourtsalas, A.C., Chi1, Y. & Yan, J. (2019). Effect of Operating Conditions on the Coke Formation and Nickel Catalyst Performance During Cracking of Tar. Waste Biomass Valorization. 10, 155–165. DOI: 10.1007/s12649-017-0044-5.
- 22. Młotek, M., Reda, E. & Krawczyk, K. (2015). Conversion of tetrachloromethane in large scale gliding discharge reactor. Open Chem. 13, 212–217. DOI: 10.1515/chem-2015-0022.
- 23. Yan, K. & Van Heesch, E.J.M. (2001). From Chemical Kinetics to Streamer Corona Reactor and Voltage Pulse Generator. Plasma Chem. Plasma Process. 21(1), 107–137. DOI: 10.1023/A:1007045529652.
- 24. Młotek, M., Ulejczyk, B., Woroszył, J., Walerczak, I. & Krawczyk, K. (2017). Purification of the gas after pyrolysis in coupled plasma-catalytic system. Pol. J. Chem. Technol. 19(4), 94–98. DOI: 10.1515/pjct-2017-0073.
- 25. Nunez, C.M., Ramsey, G.H., Ponder, W.H., Abbott, J.H., Hamel, L.E. & Kariher, P.H. (1993). Corona Destruction: An Innovative Control Technology for VOCs and Air Toxics. J. Air Waste Manag. Assoc. 43(2), 242–247. DOI: 10.1080/1073161X.1993.10467131.
- 26. Xua, W., Jianga, X., Chena, H., Chena, X., Chenb, L., Wub, J., Fub, M. & Yeb, D. (2020). Adsorption-discharge plasma system for toluene decomposition over Ni-SBA catalyst: In situ observation and humidity influence study. Chem. Eng. 382, 122950. DOI: 10.1016/j.cej.2019.122950.
- 27. Du, C.M., Yan, J.H. & Cheron, B. (2007). Decomposition of toluene in a gliding arc discharge plasma reactor. Plasma Sources Sci. Technol. 16, 791–797. DOI: 10.1088/0963-0252/16/4/014.
- 28. Lee, H. & Kim, D.H. (2018). Direct methanol synthesis from methane in a plasma-catalyst hybrid system at low temperature using metal oxide-coated glass beads. Sci. Rep. 8, 9956. DOI: 10.1038/s41598-018-28170-x.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-162d8e4d-144a-4b45-bd13-f6c1ab3045b6