Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The thermodynamical simulation predicts the phase transformation of M7C3 to M23C6, proven previously via electron microscopy. Some other reported experimental works suggest that this can also take place also during heating [22, 45, 46]. Considering this, the melting process of the primary M7C3 carbide can be that the M7C3 first undergoes a phase transformation into M23C6 and then melts, instead of directly melting. A similar conclusion was given by Gui et al. [47-49] based on experiments on the Co-based superalloy strengthened (in as-cast condition) by M7C3 and MC carbides. It was suggested that the creation of the liquid phase follows the reaction M23C6 + α→L. The reaction was initiated on the M23C6/α interface and proceeded towards the center in the range of 1280 - 1348 ˚C. Before melting, the MC eutectic carbide degenerated, and its morphology changes to a well-rounded shape. Exceeding 1400 ˚C leads to the melting reaction of MC + α→L in the X-40 Co-based superalloy.
Czasopismo
Rocznik
Tom
Strony
art. no. e170, 2022
Opis fizyczny
Bibliogr. 54 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
- Łukasiewicz Research Network-Kraków Institute of Technology, Zakopiańska 73, 30-418 Kraków, Poland
autor
- Investment Casting Division, Consolidated Precision Products Corporation, Hetmańska 120, 35-078 Rzeszow, Poland
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
autor
- Łukasiewicz Research Network-Kraków Institute of Technology, Zakopiańska 73, 30-418 Kraków, Poland
autor
- Łukasiewicz Research Network-Kraków Institute of Technology, Zakopiańska 73, 30-418 Kraków, Poland
autor
- Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice, Slovakia
autor
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- [1] Davies J. ASM specialty handbook. Heat-resistant materials. ASM International: Metals Park; 1997.
- [2] Klastrom D. Wrought cobalt-base superalloys. J Mater Eng Perform. 1993;2:523-30. https://doi.org/10.1007/BF02661736.
- [3] Coutsouradis D, Habraken L. Metallurgical applications of cobalt: a critical review. J Met. 1983;35:40-7. https://doi.org/10.1007/BF03338183.
- [4] Singh K. Advanced materials for land based gas turbines. Trans Indian Inst Met. 2014;67(5):601-15. https://doi.org/10.1007/s12666-014-0398-3.
- [5] Keyvani M, Garcin T, Fabregue D, Militzer M, Yamanaka K, Chiba A. Continous measurements of recrystallization and grain growth in cobalt super alloys. Metall Mater Trans A. 2017;48:2363-74. https://doi.org/10.1007/s11661-017-4027-8.
- [6] Rahmani K, Torabian A. Influence of welding on low cycle fatigue properties of Co-based superalloy FSX-414. Trans Nonferrous Met Soc China. 2016;26:1326-35.
- [7] Sims C. A history of superalloy metallurgy for superalloy metallurgists. In: Proceedings of the fifth international symposium on superalloys sponsored by the high temperature alloys Committee of the Metallurgical Society of AIME. Seven Springs, Pennsylvania, USA. October 7-11, 1984.
- [8] Tomaszewska A, Mikuszewski T, Moskal G, Migas D. Primary microstructure, microsegregation and precipitates characterization of an as-cast new type γ-γ’ Co-Al-Mo-Nb cobalt-based superalloy. J All Comp. 2018;750:741-9. https://doi.org/10.1016/j.jallcom.2018.03.397.
- [9] Shirpay M, Kazempour-Liacy H. Failure analysis of a repaired gas turbine nozzle. J Fail Anal Prev. 2013;13:243-8. https://doi.org/10.1007/s11668-013-9667-4.
- [10] Kuzucu V, Ceylan M, Celik H, Aksoy I. Microstructure and phase analyses of stellite 6 plus 6 wt.% Mo alloy. J Mater Proc Technol. 1997;69:257-63. https://doi.org/10.1016/S0924-0136(97)00027-7.
- [11] Naalchian M, Kasiri-Asgarani M, Shamanian M, Bakhtiari R, Bakhsheshi-Rad H. Comprehensive microstructural investigation during dissimilar transient liquid phase bonding cobalt-based superalloys by BNi-9 amorphous interlayer foil. J Mater Res Technol. 2021;13:2144-60. https://doi.org/10.1016/j.jmrt.2021.05.069.
- [12] Kuzucu V, Ceylan M, Celik H, Aksoy I. An investigation of stellite-6 alloy containing 5.0 wt% silicon. J Mater Proc Technol. 1998;79:47-51. https://doi.org/10.1016/S0924-0136(97)00452-4.
- [13] Szala J, Szczotok A, Richter J, Cwajna J, Maciejny A. Selection of methods for etching carbides in MAR-M509 cobalt-base superalloy and acquisition of their images. Mat Charact. 2006;56(4-5):325-35. https://doi.org/10.1016/j.matchar.2005.11.015.
- [14] Luna Ramirez A, Porcayo-Calderon J, Mazur Z, Salinas-Bravo V, Martinez-Gomez L. Microstructural changes during high temperature service of a cobalt-based superalloy first stage nozzle. Adv Mater Sci Eng. 2016;2016:1745839. https://doi.org/10.1155/2016/1745839.
- [15] Rakoczy Ł, Rutkowski B, Grudzień-Rakoczy M, Cygan R, Ratuszek W, Zielińska-Lipiec A. Analysis of γ’ precipitates, carbides and nano-borides in heat-treated Ni-based superalloy using SEM, STEM-EDX and HRSTEM. Materals. 2020;13(19):4452. https://doi.org/10.3390/ma13194452.
- [16] Kuzucu V, Ceylan M, Celik H, Aksoy I. Phase investigation of a cobalt base alloy containing Cr, Ni, W and C. J Mater Proc Technol. 1998;74:137-41. https://doi.org/10.1016/S0924-0136(97)00261-6.
- [17] Zhao Y, Zhang Y, Zhang Y, Luo Y, Tang D, Liu H, Fu H. Deformation behavior and creep properties oof Co-Al-W-based superalloys: a review. Prog Nat Sci Mater Int. 2021;31:641-8. https://doi.org/10.1016/j.pnsc.2021.09.009.
- [18] Coutsouradis D, Davin A, Lamberigts M. Cobalt-based superalloys for applications in gas turbines. Mater Sci Eng. 1987;88:11-9. https://doi.org/10.1016/0025-5416(87)90061-9.
- [19] Sato J, Omori T, Oikawa K, Ohnuma I, Kainuma R, Ishida K. Cobalt-base high-temperature alloys. Science. 2006;312:90-1. https://doi.org/10.1126/science.1121738.
- [20] Kamma R, Sakaguchi M, Okazaki M, Shimoda Y, Uchiyama T, Ochiai H, Watanabe M. Fatigue properties of alloy 718 overlay-coated with a Co-based X40 alloy by the micro spark coating. J Sol Mech Mater Eng. 2012;6(3):227-40. https://doi.org/10.1299/jmmp.6.227.
- [21] Schoonbaert S, Huang X. Brazing and wide gap repair of X-40 using Ni-base alloys. J Eng Gas Turb Power. 2008;130:032101. https://doi.org/10.1115/1.2836743.
- [22] Ghasemi A, Kolagar A, Pouranvari M. From as-cast to heat treated X-40 superalloy: effect of cooling rate after partial solution treatment on microstructural evolutions and mechanical properties. Mater Sci Eng. 2021;808:40891. https://doi.org/10.1016/j.msea.2021.140891.
- [23] Lukaszewicz M, Simms N, Dudziak T, Nicholls J. Effect of steam flow rate and sample orientation on steam oxidation of ferritic and austenitic steels at 650 and 700°C. Oxid Met. 2013;79(5-6):473-548. https://doi.org/10.1007/s11085-013-9358-2.
- [24] Dudziak T, Deodeshmukh V, Backert L, Sobczak N, Witkowska M, Ratuszek W, Chruściel K, Zielinski A, Sobczak J, Bruzda G. Phase investigations under steam oxidation process at 800°C for 1000 h of advanced steels and Ni-based alloys. Oxid Met. 2017;87:139-58. https://doi.org/10.1007/s11085-016-9662-8.
- [25] Dudziak T, Gajewski P, Śnieżyński B, Deodeshmukh V, Witkowska M, Ratuszek W, Chruściel K. Neural network modelling studies of steam oxidised kinetic behaviour of advanced steels and ni-based alloys at 800°C for 3000 hours. Corr Sci. 2018;133(1):94-111. https://doi.org/10.1016/j.corsci.2018.01.013.
- [26] Cao K, Yang W, Zhang J, Liu C, Qu P, Su H, Zhang J, Liu L. Solidification characteristics and as-cast microstructure of a Rucontaining nickel-based single crystal superalloy. J Mater Res Technol. 2021;11:474-86. https://doi.org/10.1016/j.jmrt.2021.01.043.
- [27] Wyckoff R. Crystal structures. New York: Interscience; 1963.
- [28] McClune F. New X-ray powder diffraction patterns from the JCPDS associateship. Powder Diffract. 1986;1:77-99.
- [29] Bowman A, Arnold G, Storms E, Nereson N. The crystal structure of Cr23C6. Acta Crystall B. 1972;28:3102-3. https://doi.org/10.1107/S0567740872007526.
- [30] Sims C, Stoloff N, Hagel W. Superalloys II. New York: Wiley-Interscience; 1987.
- [31] Matysiak H, Zagorska M, Balkowiec A, Adamczyk-Cieslak B, Dobkowski K, Koralnik M, Cygan R, Nawrocki J, Cwajna J, Kurzydlowski K. The influence of the melt-pouring temperature and inoculant content on the macro and microstructure of the IN713C Ni-based superalloy. JOM. 2016;68(1):185-97. https://doi.org/10.1007/s11837-015-1672-5.
- [32] Aigner K, Lengauer W, Rafaja D, Ettmayer P. Lattice parameters and thermal expansion of Ti(CxN1-x), Zr(CxN1-x), Hf(CxN1-x) and TiN1-x from 298 to 1473 K as investigated by high-temperature X-ray diffraction. J Alloys Compd. 1994;215:121-6. https://doi.org/10.1016/0925-8388(94)90828-1.
- [33] Momma K, Izumi F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystall. 2011;44:1272-6. https://doi.org/10.1107/S0021889811038970.
- [34] Guyard C, Barbangelo A, Allibert C, Driole J. Solidification path and phase equilibria in the liquid-solid range of cobalt-base alloy. J Mater Sci. 1981;16:604-12. https://doi.org/10.1007/BF02402776.
- [35] Hamar-Thibault S, Durrand-Charre M, Andries B. Carbide transformation during aging of wear-resistant cobalt alloys. Metall Mater Trans A. 1982;13:545-50. https://doi.org/10.1007/BF02644417.
- [36] Johansson T, Uhrenius B. Phase equilibria, isothermal reactions, and a thermodynamic study in the Co-W-C system at 1150°C. Met Sci. 1978;12(2):83-94. https://doi.org/10.1179/msc.1978.12.2.83.
- [37] Jiang W, Yao X, Guan H, Hu Z. Secondary carbide precipitation in a directionally solidified cobalt-base superalloy. Metall Mater Trans A. 1999;30A:513-20. https://doi.org/10.1007/s11661-999-0043-7.
- [38] Xie S, Wang T, Lu J, Yang H, Zhao G. Effects of Zr on microstructure and short-term strength in GH586. J Mater Sci Technol. 1999;15(5):415-8.
- [39] Wallace W, Holt R, Terada T. The nature of the sulfo-carbides observed in nickel-base superalloys. Metallography. 1973;6:511-26. https://doi.org/10.1016/0026-0800(73)90048-7.
- [40] Kudielka H, Rohde H. Structural investigation of the carbosulfides of titanium and zirconium. Zeitschrift fur Kristallographie (Crystalline Materials). 1960;114:441-56.
- [41] Lobl K, Tuma G. Carbide precipitation and carbide equilibrium in the Co-Cr-C system. Metal Sci Heat Treat. 1973;15:21-3. https://doi.org/10.1007/BF00648453.
- [42] Fedoseeva A, Tkachev E, Dudko V, Dudova N, Kaibyshev R. Effect of alloying on interfacial energy of precipitation/matrix in high-chromium martensitic steeels. J Mater Sci. 2017;52:4197-209. https://doi.org/10.1007/s10853-016-0654-5.
- [43] Skupień P, Radwański K, Gazdowicz J, Arabasz S, Wiedermann J, Szala J. Microstructure of MAR M509 cobalt-based superalloy in as-cast conditions and after heat treatment. PIMŻ. 2010;62(1):259-64 (in polish).
- [44] Sklenička V, Kvapilova M, Kral P, Dvořak J, Svoboda M, Podhorna B, Zyka J, Hrbaček K, Joch A. Degradation processes in high-temperature creep of cast cobalt-based superalloys. Mater Charact. 2018;144:479-89. https://doi.org/10.1016/j.match ar.2018.08.006.
- [45] Wagner H, Hall A. The physical metallurgy of cobalt-base superalloys. Defense metals informations center. Columbus: Battelle Memorial Institute; 1962.
- [46] Cacciamani G, Roncallo G, Wang Y, Vacchieri E, Costa A. Thermodynamic modelling of a six component (C-Co-Cr-Ni-Ta-W) system for the simulation of cobalt based alloys. J Alloys Compd. 2018;730:291-310. https://doi.org/10.1016/j.jallcom.2017.09.327.
- [47] Gui W, Zhang X, Zhang H, Sun X, Zheng Q. Melting of primary carbides in a cobalt-base superalloy. J Alloys Compd. 2019;787(30):152-7. https://doi.org/10.1016/j.jallcom.2019.02.041.
- [48] Gui W, Zhang H, Yang M, Jin T, Sun X, Zheng Q. The investigation of carbides evolution in a cobalt-base superalloy at elevated temperature. J Alloys Compd. 2017;695(25):1271-8. https://doi.org/10.1016/j.jallcom.2016.10.256.
- [49] Gui W, Zhang H, Yang M, Jin T, Sun X, Zheng Q. Influence of type and morphology of carbides on stress-rupture behavior of a cast cobalt-base superalloy. J Alloys Compd. 2017;728(25):145-51. https://doi.org/10.1016/j.jallcom.2017.08.287.
- [50] Wielgosz E, Kargul T. Differential scanning calorimetry study of peritectic steel grades. J Therm Anal Calorim. 2015;119:1547-53. https://doi.org/10.1007/s10973-014-4302-5.
- [51] Archana M, Jagadeeswara Rao C, Ningshen S, Philip J. High-temperature air and steam oxidation and oxide layer characteristics of alloy 617. J Mater Eng Perform. 2021;30:931-43. https://doi.org/10.1007/s11665-020-05367-8.
- [52] Dooley R. Program on technology innovation: oxide growth and exfoliation on alloys exposed to steam. California: Energy Power Research Institute EPRI; 2007.
- [53] Buscail H, Rolland R, Riffard F, Issartel C, Perrier S. Cobalt based alloy oxidation at high temperatures. HAL. 2017: 1-10. https://hal.archives-ouvertes.fr/hal-01628 823.
- [54] Yeh A, Wang S, Cheng C, Chang Y, Chang S. Oxidation behaviour of Si-bearing Co-based alloys. Oxid Met. 2016;86:99-112. https://doi.org/10.1007/s11085-016-9623-2.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-161dca20-af66-462e-80dd-5936319d22b4