PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reasons of adding carbon nanotubes into composite systems - review paper

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The inclusion of CNT in the laminated composite system was found to increase the energy absorption of the whole composite after impact. The main important criteria is happened CNTs, which have good interfacial adhesion strong bonding with the matrix. Thus, it will be improve the properties/performance of the composite. Therefore, in current review paper the concentration/amount of the CNT, in term of loading, affect the performance of the composite and the mechanism on how the presence of CNT tends to absorb high amount of energy after impact have been discussed.
Rocznik
Strony
549--568
Opis fizyczny
Bibliogr. 117 poz., il., 1 fot. kolor., wykr.
Twórcy
  • Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
  • Aerospace Manufacturing Research Centre (AMRC), Level 7, Tower Block, Faculty of Engineering, 43400 UPM, Serdang, Selangor, Malaysia
autor
  • Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
  • Aerospace Manufacturing Research Centre (AMRC), Level 7, Tower Block, Faculty of Engineering, 43400 UPM, Serdang, Selangor, Malaysia
autor
  • Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
  • Aerospace Manufacturing Research Centre (AMRC), Level 7, Tower Block, Faculty of Engineering, 43400 UPM, Serdang, Selangor, Malaysia
  • Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
  • Aerospace Manufacturing Research Centre (AMRC), Level 7, Tower Block, Faculty of Engineering, 43400 UPM, Serdang, Selangor, Malaysia
autor
  • Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
  • Aerospace Manufacturing Research Centre (AMRC), Level 7, Tower Block, Faculty of Engineering, 43400 UPM, Serdang, Selangor, Malaysia
Bibliografia
  • [1] Cha, J., Jin, S., Shim, J. H., Park, C. S., Ryu, H. J. and Hong, S. H.: Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites, Materials & Design, 5, 95, 1-8, 2016.
  • [2] Ramanathan, M., Shanov, V., Kumta, P. N.: Carbon Nanotube-Based Impedimetric Biosensors for Bone Marker Detection, Mitali Patil Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, Advances in Materials Science for Environmental and Energy Technologies IV: Ceramic Transactions, 253, 187, 2015.
  • [3] Pradhan, S., Pandey, P., Mohanty, S. and Nayak, S. K.: Insight on the Chemistry of Epoxy and Its Curing for Coating Applications: A Detailed Investigation and Future Perspectives. Polymer-Plastics Technology and Engineering, 55, 8, 862-77, 2016.
  • [4] Hünnekens, B., Peters, F., Avramidis, G., Krause, A., Militz, H. and Viöl, W.: Plasma treatment of wood-polymer composites: A comparison of three different discharge types and their effect on surface properties, Journal of Applied Polymer Science, 133, 18, 2016.
  • [5] Bonduel, D., Kchit, N. and Claes, M.: Use of carbon nanotubes in structural composites, Smart Intelligent Aircraft Structures (SARISTU), Springer International Publishing, 755-762, 2016.
  • [6] Chen, Y., Zhang, H. B., Yang, Y., Wang, M., Cao, A. and Yu, Z. Z.: High-Performance Epoxy Nanocomposites Reinforced with Three-Dimensional Carbon Nanotube Sponge for Electromagnetic Interference Shielding, Advanced Functional Materials, 26, 3, 447-55, 2016.
  • [7] Islam, M. S., Deng, Y., Tong, L., Faisal, S. N., Roy, A. K., Minett, A. I. and Gomes, V. G.: Grafting carbon nanotubes directly onto carbon fibers for superior mechanical stability: Towards next generation aerospace composites and energy storage applications, Carbon, 96, 701-10, 2016.
  • [8] Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E.: Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells, Composites Part B: Engineering, 89, 187- 218, 2016.
  • [9] Gómez-del Río, T., Salazar, A., Pearson, R. A. and Rodríguez, J.: Fracture behaviour of epoxy nanocomposites modified with triblock copolymers and carbon nanotubes, Composites Part B: Engineering, 87, 343-9, 2016.
  • [10] Fujigaya, T., Saegusa, Y., Momota, S., Uda, N. and Nakashima, N.: Interfacial engineering of epoxy/carbon nanotubes using reactive glue for effective reinforcement of the composite, Polymer Journal, 48, 2, 183-8, 2016.
  • [11] Zhou, H. W., Mishnaevsky, L., Yi, H. Y., Liu, Y. Q., Hu, X., Warrier, A. and Dai, G. M.: Carbon fiber/carbon nanotube reinforced hierarchical composites: Effect of CNT distribution on shearing strength, Composites Part B: Engineering, 88, 201-11, 2016.
  • [12] Randjbaran, E., Zahari, R., Abdul Jalil, N. A. and Majid, D. L.: Hybrid composite laminates reinforced with kevlar/carbon/glass woven fabrics for ballistic impact testing, The Scientific World Journal, 2014.
  • [13] Randjbaran, E., Zahari, R., Majid, D. L., Jalil, N. A., Vaghei, R. and Ahmadi, R.; The effects of stacking sequence layers of six layers composite materials in ballistic energy absorption, International Journal of Material Science Innovations, 1, 6, 293-305, 2013.
  • [14] Randjbaran, E., Zahari, R., Majid, D. L., Jalil, N. A., Vaghei, R. and Ahmadi, R.: The effects of stacking sequence layers of hybrid composite materials in energy absorption under the high velocity ballistic impact conditions: an experimental investigation, Journal of Material Sciences & Engineering, 2013.
  • [15] Randjbaran, E., Zahari, R., Majid, D. L., Jalil, N. A., Vaghei, R. and Ahmadi, R.: Effects of Stacking Sequence on Compression Response Testing of Carbon Fibre and Hybrids: Fibrous-Glass/Carbon/Kevlar/Epoxy Composite Plates, MATRIX Academic International Online Journal of Engineering and Technology, 2, 1, 13-7, 2013.
  • [16] Randjbaran, E., Zahari, R., Majid, D. L., Jalil, N. A., Vaghei, R. and Ahmadi, R.: Experimental Study of the Influence of Stacking Order of the Fibrous Layers on Laminated Hybrid Composite Plates Subjected to Compression Loading, Journal of Science and Engineering, 4, 1, 01-8, 2014.
  • [17] Randjbaran, E., Zahari, R., Vaghei, R. and Karamizadeh, F.: A Review Paper on Comparison of Numerical Techniques for Finding Approximate Solutions to Boundary Value Problems on Post-Buckling in Functionally Graded Materials, Trends Journal of Sciences Research, 1, 1, 1-6, 2015.
  • [18] Randjbaran, E., Zahari, R. and Vaghei, R.: Scanning Electron Microscopy Interpretation In Carbon Nanotubes Composite Materials After Postbuckling - Review Paper, MATRIX Academic International Online Journal of Engineering and Technology, 2, 2, 1-6, 2014.
  • [19] Randjbaran, E., Zahari, R. and Vaghei, R.: Computing Simulation of Postbuckling in Functionally Graded Materials - A Review, Indonesian Journal of Electrical Engineering and Computer Science, 12, 12, 8344-8, 2014.
  • [20] Randjbaran, E., Zahari, R., Majid D. L., Sultan, M. T. H. and Mazlan, N.: Effects of Carbon Nanotube on Mechanical Properties of Composite plates - A Review Paper, MATRIX Academic International Online Journal of Engineering and Technology, 3, 2, 1-8, 2015. http://maioj.org/pub.aspx?PaperId=101503.
  • [21] Reddy, P. R., Reddy, T. S., Srikanth, I., Madhu, V., Gogia, A. K. and Rao, K. V.: Effect of viscoelastic behaviour of glass laminates on their energy absorption subjected to high velocity impact, Materials & Design, 98, 272-9, 2016.
  • [22] Saba, N., Paridah, M. T., Abdan, K. and Ibrahim, N. A.: Dynamic mechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites, Construction and Building Materials, 124, 133-8, 2016.
  • [23] Ostovan, F., Matori, K. A., Toozandehjani M., Oskoueian, A., Yusoff, H. M., Yunus, R., Ariff, A. H., Quah, H. J. and Lim, W. F.: Effects of CNTs content and milling time on mechanical behavior of MWCNT-reinforced aluminum nanocomposites, Materials Chemistry and Physics, 166, 160-6, 2015.
  • [24] Shabaneh, A., Girei, S., Arasu, P., Mahdi, M., Rashid, S., Paiman, S. and Yaacob, M.: Dynamic response of tapered optical multimode fiber coated with carbon nanotubes for ethanol sensing application, Sensors, 15, 5, 10452-64, 2015.
  • [25] Ramli, N. I., Rashid, S. A., Sulaiman, Y., Mamat, M. S., Zobir, S. A., Krishnan, S.: Physicochemical and electrochemical properties of carbon nanotube/ graphite nanofiber hybrid nanocomposites for supercapacitor, Journal of Power Sources, 328, 195-202, 2016.
  • [26] Ghaemi, F., Yunus, R., Salleh, M. A., Rashid, S. A., Ahmadian, A. and Lim, H. N.: Effects of the surface modification of carbon fiber by growing different types of carbon nanomaterials on the mechanical and thermal properties of polypropylene, RSC Advances, 5, 36, 28822-31, 2015.
  • [27] Shojaei, T. R., Salleh, M. A., Sijam, K., Rahim, R. A., Mohsenifar, A., Safarnejad, R. and Tabatabaei, M.: Fluorometric immunoassay for detecting the plant virus Citrus tristeza using carbon nanoparticles acting as quenchers and antibodies labeled with CdTe quantum dots, Microchimica Acta, 1-1, 2016.
  • [28] Lomicka, C. W., Thomas, J. A., LaBarre, E. D., Trexler, M. M, Merkle, A. C.: Improving ballistic fiber strength: insights from experiment and simulation, Dynamic Behavior of Materials, Springer International Publishing, 1, 187-193, 2014.
  • [29] Randjbaran, E., Zahari, R., Majid, D. L., Sultan, M. T. H. and Mazlan, N.: Effects of Sloped Armour in Ballistic Impact Resistance - A Review Paper, MATRIX Academic International Online Journal of Engineering and Technology, 4, 2, 19-26, 2016. http://maioj.org/data/documents/oct2016/101603.pdf.
  • [30] Shang, Y., Hua, C., Xu, W., Hu, X., Wang, Y., Zhou, Y., Zhang, Y., Li, X. and Cao, A.: Meter-Long Spiral Carbon Nanotube Fibers Show Ultrauniformity and Flexibility, Nano letters, 16, 3, 1768-75, 2016.
  • [31] Wu, X., Morimoto, T., Mukai, K., Asaka, K. and Okazaki, T.: Relationship between Mechanical and Electrical Properties of Continuous Polymer-Free Carbon Nanotube Fibers by Wet-Spinning Method and Nanotube-Length Estimated by Far-Infrared Spectroscopy, J. Phys. Chem. C, 120, 36, 20419-20427, 2016
  • [32] Liu, P., Fan, Z., Mikhalchan, A., Tran, T. Q., Jewell, D., Duong, H. M. and Marconnet, A. M.: Continuous Carbon Nanotube-Based Fibers and Films for Applications Requiring Enhanced Heat Dissipation, ACS Applied Materials & Interfaces, 8, 27, 17461-71, 2016.
  • [33] Xu, W., Chen, Y., Zhan, H. and Wang, J. N.: High-Strength Carbon Nanotube Film from Improving Alignment and Densification, Nano letters, 16, 2, 946-52, 2016.
  • [34] Zare, M., Rayegan-Shirazi, A., Rezaei, S., Sadat, S. A., Baneshi, M. M. and Randjbaran, E.: Effects of Polychlorinated biphenyls compounds on the number of bacteria in the rhizosphere of sorghum and Onobrychis sativa, Advances in Bioresearch, 7, 3, 2016.
  • [35] Mirri, F., Orloff, N. D., Forster, A. M., Ashkar, R., Headrick, R. J., Bengio, E. A., Long, C. J., Choi, A., Luo, Y., Hight Walker, A. R. and Butler, P.: Lightweight, flexible, high-performance carbon nanotube cables made by scalable flow coating, ACS applied materials & interfaces, 8, 7, 4903-10, 2016.
  • [36] Davaa, E., Safari, M., Randjbaran, E. and Randjbaran, S.: The Factors That Influence Customer Satisfaction Level in the Mongolian Banking Industry, Journal of Insurance and Financial Management, 1, 3, 2016.
  • [37] O’Connor, I., Hayden, H., Coleman, J. N. and Gun’ko, Y. K.: High-Strength, High-Toughness Composite Fibers by Swelling Kevlar in Nanotube Suspensions, Small, 5, 4, 466-9, 2009.
  • [38] Govarthanam, K. K., Anand, S. C. and Rajendran, S.: 7 Technical textiles for knife and slash resistance, Handbook of Technical Textiles: Technical Textile Applications, 2, 193, 2016.
  • [39] Dwivedi, A. K., Dalzell, M. W., Fossey, S. A., Slusarski, K. A., Long, L. R. and Wetzel, E. D.: Low velocity ballistic behavior of continuous filament knit aramid, International Journal of Impact Engineering, 96, 23-34, 2016.
  • [40] Yang, D. and Chen, X.: Multi-layer pattern creation for seamless front female body armor panel using angle-interlock woven fabrics, Textile Research Journal, 0040517516631315, 2016.
  • [41] Lomicka, C. W., Thomas, J. A., LaBarre, E. D., Trexler, M. M. and Merkle, A. C.: Improving ballistic fiber strength: insights from experiment and simulation, Dynamic Behavior of Materials, Springer International Publishing 1, 187-193, 2014.
  • [42] Sockalingam, S., Chowdhury, S. C., Gillespie, J. W. and Keefe, M.: Recent advances in modeling and experiments of Kevlar ballistic fibrils, fibers, yarns and flexible woven textile fabrics-a review, Textile Research Journal, 004051751664603, 2016.
  • [43] O’Connor, I., Hayden, H., Coleman, J. N. and Gun’ko, Y. K.: High-Strength, High-Toughness Composite Fibers by Swelling Kevlar in Nanotube Suspensions, Small, 5, 4, 466-9, 2009.
  • [44] Zheng, J., Duan, X., Lin, H., Gu, Z., Fang, H., Li, J. and Yuan, Y.: Silver nanoparticles confined in carbon nanotubes: on the understanding of the confinement effect and promotional catalysis for the selective hydrogenation of dimethyl oxalate, Nanoscale, 8, 11, 5959-67, 2016.
  • [45] Haft, M., Grönke, M., Gellesch, M.,Wurmehl, S., Büchner, B., Mertig, M. and Hampel, S.: Tailored nanoparticles and wires of Sn, Ge and Pb inside carbon nanotubes, Carbon, 101, 352-60, 2016.
  • [46] Gun’ko, V. M. and Do, D. D.: Characterisation of pore structure of carbon adsorbents using regularisation procedure, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 193, 1, 71-83, 2001.
  • [47] Gun’ko, V. M. and Mikhalovsky, S. V.: Evaluation of slitlike porosity of carbon adsorbents, Carbon, 42, 4, 843-9, 2004.
  • [48] Jiang, L. Y., Huang, Y., Jiang, H., Ravichandran, G., Gao, H., Hwang, K. C. and Liu, B.: A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force, Journal of the Mechanics and Physics of Solids, 54, 11, 2436-52, 2006.
  • [49] Wong, M., Paramsothy, M., Xu, X. J., Ren, Y., Li, S. and Liao, K.: Physical interactions at carbon nanotube-polymer interface, Polymer, 44, 25, 7757-64, 2003.
  • [50] Liao, K. and Li, S.: Interfacial characteristics of a carbon nanotube-polystyrene composite system, Applied Physics Letters, 79, 25, 4225-7, 2001.
  • [51] Veedu, V. P., Cao, A., Li, X., Ma, K., Soldano, C., Kar, S., Ajayan, P. M. and Ghasemi-Nejhad, M. N.: Multifunctional composites using reinforced laminae with carbon-nanotube forests, Nature materials, 5, 6, 457-62, 2006.
  • [52] Wang, Y., Colas, G. and Filleter, T.: Improvements in the mechanical properties of carbon nanotube fibers through graphene oxide interlocking, Carbon, 98, 291-9, 2016.
  • [53] Koizumi, R., Hart, A. H., Brunetto, G., Bhowmick, S., Owuor, P. S., Hamel, J. T., Gentles, A. X., Ozden, S., Lou, J., Vajtai, R. and Asif, S. S.: Mechano-chemical stabilization of three-dimensional carbon nanotube aggregates, Carbon, 110, 27-33, 2016.
  • [54] Chowdhury, S. C. and Okabe, T.: Computer simulation of carbon nanotube pullout from polymer by the molecular dynamics method, Composites Part A: Applied Science and Manufacturing, 38, 3, 747-54, 2007.
  • [55] Li, Y., Liu, Y., Peng, X., Yan, C., Liu, S. and Hu, N.: Pull-out simulations on interfacial properties of carbon nanotube-reinforced polymer nanocomposites. Computational Materials Science, 50, 6, 1854-60, 2011.
  • [56] Wagner, H. D. and Vaia, R. A.: Nanocomposites: issues at the interface, Materials Today, 7, 11, 38-42, 2004.
  • [57] Wagner, H. D., Ajayan, P. M. and Schulte, K.: Nanocomposite toughness from a pull-out mechanism, Composites Science and Technology, 83, 27-31, 2013.
  • [58] Esawi, A. M., Morsi, K., Sayed, A., Taher, M. and Lanka, S.: Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites, Composites Science and Technology, 70, 16, 2237-41, 2010.
  • [59] He, X. Q., Kitipornchai, S. and Liew, K. M.: Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van derWaals interaction, Journal of the Mechanics and Physics of Solids, 53, 2, 303-26, 2005.
  • [60] Jiang, L. Y., Huang, Y., Jiang, H., Ravichandran, G., Gao, H., Hwang, K. C. and Liu, B.: A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force, Journal of the Mechanics and Physics of Solids, 54, 11, 2436-52, 2006.
  • [61] Tan, H., Jiang, L. Y., Huang, Y., Liu, B. and Hwang, K. C.: The effect of van der Waals-based interface cohesive law on carbon nanotube-reinforced composite materials, Composites Science and Technology, 67, 14, 2941-6, 2007.
  • [62] Liu, X., Yang, Q. S., He, X. Q. and Liew, K. M.: Cohesive laws for van der Waals interactions of super carbon nanotube/polymer composites, Mechanics Research Communications, 72, 33-40, 2016.
  • [63] Nagataki, A., Takei, K., Arie, T. and Akita, S.: Carbon nanotube mechanical resonator in potential well induced by van der Waals interaction with graphene, Applied Physics Express, 8, 8, 085101, 2015.
  • [64] Zhang, X., Zhou, W. X., Chen, X. K., Liu, Y. Y. and Chen, K. Q.: Significant decrease in thermal conductivity of multi-walled carbon nanotube induced by interwall van der Waals interactions, Physics Letters A, 380, 21, 1861-4, 2016.
  • [65] Chernozatonskii, L. A., Artyukh, A. A., Demin, V. A. and Katz, E. A.: Bucky-corn: van der Waals composite of carbon nanotube coated by fullerenes, Molecular Physics, 114, 9, 92-101, 2016.
  • [66] Perebeinos, V. and Tersoff, J.: Wetting transition for carbon nanotube arrays under metal contacts, Physical review letters, 114, 8, 085501, 2015.
  • [67] Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E.: Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells, Composites Part B: Engineering, 89, 187- 218, 2016.
  • [68] Kumar, A. A., Sundaram, R.: Cure cycle optimization for the resin infusion technique using carbon nanotube additives, Carbon, 96, 1043-52, 2016.
  • [69] Kamarian, S., Salim, M., Dimitri, R. and Tornabene, F.: Free vibration analysis of conical shells reinforced with agglomerated Carbon Nanotubes, International Journal of Mechanical Sciences, 108, 157-65, 2016.
  • [70] Rathore, D. K., Singh, B. P., Mohanty, S. C., Prusty, R. K. and Ray, B. C.: Temperature dependent reinforcement efficiency of carbon nanotube in polymer composite, Composites Communications, 1, 29-32, 2016.
  • [71] Bautista-Quijano, J. R., Pötschke, P., Brünig, H. and Heinrich, G.:Strain sensing, electrical and mechanical properties of polycarbonate/multiwall carbon nanotube monofilament fibers fabricated by melt spinning, Polymer, 82, 181-9, 2016.
  • [72] Herceg, T. M., Abidin, M. S., Greenhalgh, E. S., Shaffer, M. S., Bismarck, A.; Thermosetting hierarchical composites with high carbon nanotube loadings: En route to high performance, Composites Science and Technology, 127, 134-41, 2016.
  • [73] Wang, J., Bahk, Y. K., Chen, S. C., Pui, D. Y.: Characteristics of airborne fractal-like agglomerates of carbon nanotubes, Carbon, 93, 441-50, 2015.
  • [74] Moghadam, A. D., Omrani, E., Menezes, P. L., Rohatgi, P. K.: Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene-a review, Composites Part B: Engineering, 77, 402-20, 2015.
  • [75] Chen, S. J., Qiu, C. Y., Korayem, A. H., Barati, M. R.and Duan, W. H.: Agglomeration process of surfactant-dispersed carbon nanotubes in unstable dispersion: A two-stage agglomeration model and experimental evidence, Powder Technology, 301, 412-20, 2016.
  • [76] Romanov, V. S., Lomov, S. V., Verpoest, I., Gorbatikh, L.: Stress magnification due to carbon nanotube agglomeration in composites, Composite Structures, 133, 246-56, 2015.
  • [77] Balasubramanian, K., Burghard, M.: Chemically functionalized carbon nanotubes, Small, 1, 2, 180-92, 2005.
  • [78] Wong, S. S., Joselevich, E., Woolley, A. T., Cheung, C. L., Lieber, C. M.: Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology, Nature, 394, 6688, 52-5, 1998.
  • [79] Banerjee, S., Hemraj-Benny, T., Wong, S. S.: Covalent surface chemistry of single-walled carbon nanotubes, Advanced Materials, 17, 1, 17-29, 2005.
  • [80] Bianco, A., Kostarelos, K., Prato, M.: Applications of carbon nanotubes in drug delivery, Current opinion in chemical biology, 9, 6, 674-9, 2005.
  • [81] Spitalsky, Z., Tasis, D., Papagelis, K. and Galiotis, C.: Carbon nanotube- polymer composites: chemistry, processing, mechanical and electrical properties, Progress in polymer science, 35, 3, 357-401, 2010.
  • [82] Salvetat, J. P., Bonard, J. M., Thomson, N. H., Kulik, A. J., Forro, L., Benoit, W. and Zuppiroli, L.: Mechanical properties of carbon nanotubes, Applied Physics A, 69, 3, 255-60, 1999.
  • [83] Wei, B. Q., Vajtai, R. and Ajayan, P. M.: Reliability and current carrying capacity of carbon nanotubes, Applied Physics Letters, 79, 8, 1172, 2001.
  • [84] Li, Q. W., Li, Y., Zhang, X. F., Chikkannanavar, S. B., Zhao, Y. H., Dangelewicz, A. M., Zheng, L. X., Doorn S. K., Jia, Q. X., Peterson, D. E. and Arendt, P. N.: Structure-dependent electrical properties of carbon nanotube fibers. Advanced Materials, 19, 20, 3358-63, 2007.
  • [85] Dumitrica, T., Landis, C. M. and Yakobson, B. I.: Curvature-induced polarization in carbon nanoshells, Chemical physics letters, 360, 1, 182-8, 2002.
  • [86] Zhang, H. W., Wang, J. B. and Guo, X.: Predicting the elastic properties of single-walled carbon nanotubes, Journal of the Mechanics and Physics of Solids, 53, 9, 1929-50, 2005.
  • [87] Banhart, F.: Interactions between metals and carbon nanotubes: at the interface between old and new materials, Nanoscale, 1, 2, 201-13, 2009.
  • [88] Jakubinek, M. B., Ashrafi, B., Zhang, Y., Martinez-Rubi, Y., Kingston, C. T., Johnston, A. and Simard, B.: Single-walled carbon nanotube-epoxy composites for structural and conductive aerospace adhesives, Composites Part B: Engineering, 69, 87-93, 2015.
  • [89] Papadopoulos, A., Gkikas, G., Paipetis, A. S., Barkoula, N. M.: Effect of CNTs addition on the erosive wear response of epoxy resin and carbon fibre composites, Composites Part A: Applied Science and Manufacturing, 84, 299-307, 2016.
  • [90] Fujigaya, T., Saegusa, Y., Momota, S., Uda, N. and Nakashima, N.: Interfacial engineering of epoxy/carbon nanotubes using reactive glue for effective reinforcement of the composite, Polymer Journal, 48, 2, 183-8, 2016.
  • [91] Sun, Y., Lu, J., Ai, C., Wen, D. and Bai, X.: Multilevel resistive switching and nonvolatile memory effects in epoxy methacrylate resin and carbon nanotube composite films, Organic Electronics, 32, 7-14, 2016.
  • [92] Ling, Y., Li, W., Wang, B., Gan, W., Zhu, C., Brady, M. A. and Wang, C.: Epoxy resin reinforced with nanothin polydopamine-coated carbon nanotubes: a study of the interfacial polymer layer thickness, RSC Advances, 6, 37, 31037-45, 2016.
  • [93] Mei, H., Zhang, S., Chen, H., Zhou, H., Zhai, X. and Cheng, L.: Interfacial modification and enhancement of toughening mechanisms in epoxy composites with CNTs grafted on carbon fibers, Composites Science and Technology, 134, 89-95, 2016.
  • [94] Wu, J., Chen, J., Zhao, Y., Liu, W. and Zhang, W.: Effect of electrophoretic condition on the electromagnetic interference shielding performance of reduced graphene oxide-carbon fiber/epoxy resin composites, Composites Part B: Engineering, 105, 167-75, 2016.
  • [95] Umer, R., Li, Y., Dong, Y., Haroosh, H. J. and Liao, K.: The effect of graphene oxide (GO) nanoparticles on the processing of epoxy/glass fiber composites using resin infusion, The International Journal of Advanced Manufacturing Technology, 81, 9-12, 2183-92, 2015.
  • [96] Schlagenhauf, L., Buerki-Thurnherr, T., Kuo, Y. Y., Wichser, A., Nuesch, F., Wick, P. and Wang, J.: Carbon Nanotubes Released from an Epoxy-Based Nanocomposite: Quantification and Particle Toxicity, Environmental Science & Technology, 49, 17, 10616-23, 2015.
  • [97] Rafique, I., Kausar, A., Anwar, Z. and Muhammad, B.: Exploration of Epoxy Resins, Hardening Systems, and Epoxy/Carbon Nanotube Composite Designed for High Performance Materials: A Review, Polymer-Plastics Technology and Engineering, 55, 3, 312-33, 2016.
  • [98] Schlagenhauf, L., Kuo, Y. Y., Bahk, Y. K., N¨uesch, F. and Wang, J.: Decomposition and particle release of a carbon nanotube/epoxy nanocomposite at elevated temperatures, Journal of Nanoparticle Research, 17, 11, 1-11, 2015.
  • [99] Gong, L. X., Zhao, L., Tang, L. C., Liu, H. Y. and Mai, Y. W.: Balanced electrical, thermal and mechanical properties of epoxy composites filled with chemically reduced graphene oxide and rubber nanoparticles, Composites Science and Technology, 121, 104-14, 2015.
  • [100] Pathak, A. K., Borah, M., Gupta, A., Yokozeki, T. and Dhakate, S. R.: Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites, Composites Science and Technology, 135, 28-38, 2016.
  • [101] Wang, J., Zhao, Y., Ma, F. X., Wang, K., Wang, F. B. and Xia, X. H.: Synthesis of a hydrophilic poly-L-lysine/graphene hybrid through multiple noncovalent interactions for biosensors, Journal of Materials Chemistry B, 1, 10, 1406-13, 2013.
  • [102] Tallury, S. S. and Pasquinelli, M. A.: Molecular dynamics simulations of polymers with stiff backbones interacting with single-walled carbon nanotubes, The Journal of Physical Chemistry B, 114, 2, 9349-55, 2010.
  • [103] Pan, B. and Xing, B.: Adsorption mechanisms of organic chemicals on carbon nanotubes, Environmental Science & Technology, 42, 24, 9005-13, 2008.
  • [104] Xu, Z., Wei, C., Gong, Y., Chen, Z., Yang, D., Su, H. and Liu, T.: Efficient dispersion of carbon nanotube by synergistic effects of sisal cellulose nano-fiber and graphene oxide, Composite Interfaces, 1-5, 2016.
  • [105] Wang, Y. and Xu, Z.: Interaction mechanism of doxorubicin and SWCNT: protonation and diameter effects on drug loading and releasing, RSC advances, 6, 6, 314-22, 2016.
  • [106] Hua, Z., Qin, Q., Bai, X., Huang, X. and Zhang, Q.: An electrochemical biosensing platform based on 1-formylpyrene functionalized reduced graphene oxide for sensitive determination of phenol, RSC Advances, 6, 30, 25427-34, 2016.
  • [107] Wang, Y., Ren, P., Gu, X., Wen, X., Wang, Y., Guo, X., Waclawik, E. R., Zhu, H. and Zheng, Z.: Probing the mechanism of benzaldehyde reduction to chiral hydrobenzoin on the CNT surface under near-UV light irradiation, Green Chemistry, 18, 6, 1482-7, 2016.
  • [108] López-Lorente, Á. I. and Valcárcel, M.: The third way in analytical nanoscience and nanotechnology: Involvement of nanotools and nanoanalytes in the same analytical process, TrAC Trends in Analytical Chemistry, 75, 1-9, 2016.
  • [109] Kazemi-Beydokhti, A., Heris, S. Z. and Jaafari, M. R.: Investigation of different methods for cisplatin loading using single-walled carbon nanotube, Chemical Engineering Research and Design, 112, 56-63, 2016.
  • [110] Hajibadi, H. and, Nowroozi, A.: Study on the interaction of metallocene catalysts with the surface of carbon nanotubes and its influence on the catalytic properties. 1. Investigation of possible complex structures and the influence on structural and electronic properties, Journal of Organometallic Chemistry, 2016.
  • [111] Li, J. and Lee, E. C.: Functionalized multi-wall carbon nanotubes as an efficient additive for electrochemical DNA sensor, Sensors and Actuators B: Chemical, 239, 652-9, 2017.
  • [112] Bal, S. and Samal, S. S.: Carbon nanotube reinforced polymer composites - a state of the art, Bulletin of Materials Science, 30, 4, 379-86, 2007.
  • [113] Chen, Y., Zhang, H. B., Yang, Y., Wang, M., Cao, A. and Yu, Z. Z.: High-Performance Epoxy Nanocomposites Reinforced with Three-Dimensional Carbon Nanotube Sponge for Electromagnetic Interference Shielding, Advanced Functional Materials, 26, 3, 447-55, 2016.
  • [114] Fujigaya, T., Saegusa, Y., Momota, S., Uda, N. and Nakashima, N.: Interfacial engineering of epoxy/carbon nanotubes using reactive glue for effective reinforcement of the composite, Polymer Journal, 48, 2, 183-8, 2016.
  • [115] Bakhtiar, N. S., Akil, H. M., Zakaria, M. R., Kudus, M. H. and Othman, M. B.: New generation of hybrid filler for producing epoxy nanocomposites with improved mechanical properties, Materials & Design, 91, 46-52, 2016.
  • [116] Üstün, T., Eskizeybek, V. and Avci, A.: Enhanced fatigue performances of hybrid nanoreinforced filament wound carbon/epoxy composite pipes, Composite Structures, 150, 124-31, 2016.
  • [117] Kleinschmidt, A. C., Almeida, J. H., Donato, R. K., Schrekker, H. S., Marques, V. C., Corat, E. J. and Amico, S.C.: Functionalized-Carbon Nanotubes with Physisorbed Ionic Liquid as Filler for Epoxy Nanocomposites. Journal of Nanoscience and Nanotechnology, 16, 9, 9132-40, 2016.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-161bba65-3df0-461c-8200-5ba6bd79d946
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.