PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Preparation and characterization of ZnO-PMMA resin nanocomposites for denture bases

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the paper was to investigate the antifungal activity of zinc oxide nanoparticles (ZnONPs) against Candida albicans. Some attempts have been made to find out the best way to introduce ZnONPs into polymethyl methacrylate (PMMA) resin material and to determine some parameters of a newly formed composite. Material and methods: Zinc oxide nanoparticles were manufactured and their basic physical parameters were determined (average particle size, density, specific surface area). Minimal inhibitory concentration (MIC) of ZnONPs was determined for the Candida albicans standard strain. The average size of ZnO conglomerates in the monomer solution of PMMA resin was measured using a dynamic light scattering instrument. PMMA resin samples with incorporated ZnONPs were produced. The morphology of nanopowder and the newly formed composite was examined under a scanning electron microscope (SEM). In addition, the roughness parameter of PMMA resin material was investigated before and after ZnONPs modification. Results: Nanopowder with the average particle size of 30 nm, density of 5.24 g/cm3 and surface area of 39 m2 /g was obtained. MIC was determined at the level of 0.75 mg/mL. The average size of ZnO conglomerates in the monomer solution of acrylic resin dropped by 11 times after ultrasound activation. SEM examination of a newly formed composite showed a successful introduction of ZnONPs confirmed by the energy dispersive X-ray spectroscopy (EDS) analysis. There were no statistically significant differences in the biomaterial roughness before and after the modification of ZnONPs. Conclusion: Zinc oxide nanoparticles were successfully incorporated into acrylic resin used for the production of denture bases. The presence of nanoparticles with sizes below 100 nm was confirmed. Nevertheless a newly created composite needs to be further investigated to improve its homogeneity, and to check its microbiological properties, strength and biocompatibility prior to its possible clinical use.
Rocznik
Strony
31--41
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Prosthetic Dentistry, Medical University of Warsaw, Poland
  • Institute of High Pressure Physic, Polish Academy of Sciences, Warsaw, Poland
autor
  • Division of Silicon Microsystem and Nanostructure Technology, Institute of Electron Technology, Warsaw, Poland
  • Department of Prosthetic Dentistry, Medical University of Warsaw, Poland
  • Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland
autor
  • Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Poland
  • Institute of High Pressure Physic, Polish Academy of Sciences, Warsaw, Poland
  • Faculty of Management, Białystok University of Technology, Białystok, Poland
  • Department of Prosthetic Dentistry, Medical University of Warsaw, Poland
Bibliografia
  • [1] ABBEELE A.V., DE MEEL H., AHARIZ M., Denture contamination by yeasts in the elderly, Gerodontology, 2008, Vol. 25, 222–228.
  • [2] AGREN M.S., Zinc in wound repair, Arch. Dermatol., 1999, Vol. 135(10), 1273–1274.
  • [3] ARAI T., UEDA T., SUGIYAMA T., SAKURAI K., Inhibiting microbial adhesion to denture base acrylic resin by titanium dioxide coating, J. of Oral Rehab., 2009, Vol. 36, 902–908.
  • [4] AZAM A., AHMED A.S., OVES M., KHAN M.S., HABIB S.S., MEMIC A., Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study, Int. J. Nanomedicine, 2012, Vol. 7, 6003–6009.
  • [5] BIRNBOIM A., GERSHON D., CALAME J., BIRMAN A., CARMEL Y., RODGERS J., LEVUSH B., BYKOV Y.V., EREMEEV A.G., HOLOPTSEV V.V., SEMENOV V.E., DADON D., MARTIN P.L., ROSEN M., HUTCHEON R., Comparative Study of Microwave Sintering of Zinc Oxide at 2.45, 30, and 83 GHz, J. Am. Ceram. Soc., 1998, Vol. 81(6), 1493–1501.
  • [6] BRAYNER R., FERRARI-ILIOU R., BRIVOIS N., DJEDIAT S., BENEDETTI M.F., FIÉVET F., Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium, Nano Lett., 2006, Vol. 4, 866–870.
  • [7] CHANDRA J., KUHN D.M., MUKHERJEE P.K., HOYER L.L., MCCORMICK T., GHANNOUM M.A., Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance, J. Bacteriol., 2001, Vol. 183, 5385–5394.
  • [8] de LIMA R., SEABRA A.B., DURAN N., Silver nanoparticles: a brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles, J. Appl. Toxicol., 2012, Vol. 32, 867–879.
  • [9] ERRICSON H., SHERRIS J.C., Antibiotic sensitivity testing. Report of an international collaborative study, Acta Pathol. Microbial. Scand. Sect. B, 1971, Vol. 217, (9), 1–90.
  • [10] European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Clin. Microbial. Infect., 2000, Vol. 6(9), 509–515.
  • [11] GENDREAU L., LOEWY Z.G., Epidemiology and Etiology of Denture Stomatitis, Journal of Prosthodontics, 2011, Vol. 20, 251–260.
  • [12] GONDAL M.A., ALZAHRANI A.J., RANDHAWA M.A., SIDDIQUI M.N., Morphology and antifungal effect of nano-ZnO and nano-Pd-doped nano-ZnO against Aspergillus and Candida, J. Environ. Sci. Health, 2012, Vol. 47(10), 1413–1418.
  • [13] KHAN M.F., HAMEEDULLAH M., ANSARI A.H., AHMAD E., LOHANI M.B., KHAN R.H., MEZBAUL M., KHAN A.W., HUSAIN F.M., AHMAD I., Flower-shaped ZnO nanoparticles synthesized by a novel approach at near-room temperatures with antibacterial and antifungal properties, Int. J. Nanomedicine, 2014, Vol. 9, 853–864.
  • [14] LAZARIN A., MACHADO A., ZAMPERINI C., WADY A., SPOLIDORIO D., VERGANI C., Effect of experimental photopolymerized coatings on the hydrophobicity of a denture base acrylic resin and on Candida albicans adhesion, Arch. of Oral Biol., 2013, Vol. 58, 1–9.
  • [15] LI Z., SUN J., LAN J., QI Q., Effect of a denture base acrylic resin containing silver nanoparticles on Candida albicans adhesion and biofilm formation, Gerodontology, 2014. DOI: 10.1111/ger.12142.
  • [16] LOJKOWSKI W., LEONELLI C., CHUDOBA T., WOJNAROWICZ J., MAJCHER A., MAZURKIEWICZ A., High-Energy-Low-Temperature Technologies for the Synthesis of Nanoparticles: Microwaves and High Pressure, Inorganics, 2014, Vol. 2, 606–619.
  • [17] MAJCHER A., WIEJAK J., PRZYBYLSKI J., CHUDOBA T., WOJNAROWICZ J., A novel reactor for microwave hydrothermal scale-up nanopowder synthesis, Int. J. Chem. React. Eng., 2013, Vol. 11, 1–8.
  • [18] MORIARTY P., Nanostructured materials, Rep. Prog. Phys., 2001, Vol. 64(3), 297–381.
  • [19] MORONES J.R., ELECHIGUERRA J.L., CAMACHO A., HOLT K., KOURI J.B., RAMIREZ J.T., YACAMAN M.J., The bactericidal effect of silver nanoparticles, Nanotechnology, 2005, Vol. 16, 2346–2353.
  • [20] NAM K., Characterization and bacterial anti-adherent effect on modified PMMA denture acrylic resin containing platinum nanoparticles, J. Adv. Prosthodont., 2014, Vol. 6, 207–214.
  • [21] PADMAVATHY N., VIJAYARAGHAVAN R., Enhanced bioactivity of ZnO nanoparticles – an antimicrobial study, Sci. Technol. Adv. Mater., 2008, Vol. 9. DOI: 10.1088/1468-6996/9/3/035004.
  • [22] RAGHUPATHI K.R., KOODALI R.T., MANNA A.C., Sizedependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles, Langmuir, 2011, Vol. 27(7), 4020–4028.
  • [23] SATO M., OHSHIMA T., MAEDA N., OHKUBO C., Inhibitory effect of coated mannan against the adhesion of Candida biofilms to denture base resin, Dent. Mater J., 2013, Vol. 32, 355–360.
  • [24] SPIECHOWICZ E., MIERZWIŃSKA-NASTALSKA E., Oral cavity candidosis, Med. Tour Press International, 1998.
  • [25] WEJRZANOWSKI T., PIELASZEK R., OPALINSKA A., MATYSIAK H., LOJKOWSKI W., KURZYDLOWSKI K.J., Quantitative methods for nanopowder characterization, App. Surf. Science, 2006, Vol. 253, 204–208.
  • [26] XIA T., KOVOCHICH M., LIONG M., MADLER L., GILBERT B., SHI H., YEH J.I., ZINK J.I., NEL A.E., Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties, Nano Lett., 2008, Vol. 2, 2121–2134.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-161463ea-8352-4f83-bfed-3774d7d13a69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.