PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spatial Heterogeneity of Soil Silicon in Ukrainian Phaozems and Chernozems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigated the spatial variability of the soil silicon content in relation with topography, parent materials, soil texture, soil organic matter, exchangeable cations and pH. Using the experimental data from two longterm sites in the Forest-Steppe area of Ukraine, the SiO2 content was estimated in 60 samples taken from a soil depth 0–25 cm. The accumulation of SiO2 was significantly greater in the soils formed in footslopes. A content of extractable silicon fraction significantly increased from a sandy loam(366–465 mg•kg-1) to medium(670–697 mg•kg-1) and heavy(506–849 mg•kg-1) textured soils. The highest amount of available silicon content was found in the soils containing: 35.0–39.9% of physical clay fraction (< 0.01 mm dia) in Hrytsiv area – 143.0 ± 46 mg•kg-1 and < 25.0% of physical clay fraction in Khrolyn area – 125.0 ±6 mg•kg-1. A significant relationship was found between pHKCl, P2O5, K2O, Mg and both forms of SiO2. There was almost no correlation between available/ extractable SiO2 and exchangeable Ca and ∑ Ca+Mg. Our studies found the best correlation between extractable SiO2 and spring barley yield (r = 0.651; P = 0.041), as well assoluble SiO2 and corn for grain yield (r = 0.514; P = 0.128). No significant relationships were found for sugar beet, winter wheat, sunflower.
Słowa kluczowe
Rocznik
Strony
111--119
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
  • National University of Life and Environmental Sciences of Ukraine, Heroyiv Oborony St. 15, Kyiv, 03041, Ukraine
  • Sumy National Agrarian University, H. Kondratieva St., 160, Sumy, 40021, Ukraine
autor
  • LLC “LotikaElit” Centralstreet, building 1, building B, Lotivka Village, Shepetivskyi District, Khmelnytsky Region, 30453, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, Heroyiv Oborony St. 15, Kyiv, 03041, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, Heroyiv Oborony St. 15, Kyiv, 03041, Ukraine
  • National University of Life and Environmental Sciences of Ukraine, Heroyiv Oborony St. 15, Kyiv, 03041, Ukraine
autor
  • National University of Life and Environmental Sciences of Ukraine, Heroyiv Oborony St. 15, Kyiv, 03041, Ukraine
autor
  • Sumy National Agrarian University, H. Kondratieva St., 160, Sumy, 40021, Ukraine
  • Sumy National Agrarian University, H. Kondratieva St., 160, Sumy, 40021, Ukraine
Bibliografia
  • 1. Anderson D.L. 1991. Soil and leaf nutrient interactions following application of calcium silicate slag to sugarcane. Fertilizer Research, 30, 9–18.
  • 2. Bazilevich N.I. 1993. The Biological Productivity of North Eurasian Ecosystems. RAS Institute of Geography. Moscow, Nayka, pp. 293.
  • 3. Blecker S.W., McCulley R.L., Chadwick O.A. et al. 2006. Biological cycling of silica across a grassland bioclimosequence. Glob Biogeochem Cycles 20: 1–11.
  • 4. Brinker С.J., Scherer G.W. 1990. The Physics and Chemistry of Sol-Gel Processing. Academic Press, Inc., Am Imprint of Elsevier, pp. 908.
  • 5. Bykova O., Tonkha O., Pikovska O. & Pak O. 2020. Soluble silicon compounds in soils of different granulometric composition of the western region of Ukraine. Scientific journal «Plant and Soil Science». 11(2), 22–29. doi:http://dx.doi.org/10.31548/agr2020.02.022
  • 6. Cornelis J. T., Delvauz B., Georg R.B., Lucas Y., Ranger J., Opfergelt S. 2011. Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: A review. Biogeosciences, 8: 89–112.
  • 7. Datnoff L.E., Deren C.W., Snyder G.H. 1997. Silicon fertilization for disease management of rice in Florida. Crop Prot 16:525–531 Jones R.L. (1969) Determination of opal in soil by alkali dissolution analysis. Soil Sci Soc Am Proc 33: 976–978.
  • 8. Dietzel M. 2002. Interaction of polysilicic and monosilicic acid with mineral surfaces. In: Stober I, Bucher K (eds) Water–rock interaction. Kluwer, Dordrecht, pp. 207–235.
  • 9. Drees L.R., Wilding L.P., Smeck N.E. et al. 1989. Silica in soils: quartz and disorders polymorphs. In: Minerals in soil environments. Soil Science Society of America, Madison, pp. 914–974.
  • 10. DSTU 4115–2002 Soils. Determination of mobile compounds of phosphorus and potassium by the modified Chirikov method [Valid from 2003–01–01] (State standard of Ukraine).
  • 11. DSTU 4289:2004 Soil quality. Methods for determination of organic matter [Valid from 2005–07–01] (State standard of Ukraine).
  • 12. DSTU 4730:2007 Soil quality. Determination of particle size distribution by pipette method in the modification of N.A. Kachynskiy. [Valid from 2008–01–01]. (State standard of Ukraine).
  • 13. DSTUISO 10390:2007 Soil quality. Determination of pH (ІSO 10390:2005, IDT). – [ Valid from 2009–10–01] (State standard of Ukraine).
  • 14. DSTUISO 11464–2001 2007 Soil quality. Pre-treatment of samples for physicochemical analysis (ІSO 11464:2006, IDT) [Valid from 2009–10–01] (State standard of Ukraine).
  • 15. Epstein E. 1994. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. U.S.A., 91: 11–17.
  • 16. Fernandes M.L., Macias F. 1987.Variacionestansional de la composicion de la disolucion de suelos de Galicia enrelacion, 1994.
  • 17. Foy C.D. 1992. Soil chemical factors limiting plant root growth. Adv Soil Sci 19: 97–149.
  • 18. Guntzer F., Keller G., Meunier J. .2012. Benefits of plant silicon for crops: a review. Agron Sustain Dev 32: 201–213.
  • 19. Hall A.D., Morison G.T. 1906. On the function of silica in the nutrition of cereals. Part 1. Proc. Royal Soc. Ser. B, 77: 455–477.
  • 20. Hansen H.C.B., Raben-Lange B., Raulund-Rasmussen K. et al. 1994.Monosilicate adsorption by ferrihydrite andgoethite at pH 3–6. Soil Sci 158: 40–46.
  • 21. IlerR.K. 1979. The chemistry of silica. Wiley, New York, p. 621.
  • 22. ISO 18400–102:2017 Soil quality – Sampling – Part 102: Selection and application of sampling techniques.
  • 23. Jones R.L. 1969. Determination of opal in soil by alkali dissolution analysis. Soil Sci Soc Am Proc 33: 976–978.
  • 24. Jones L.H.P., Handreck K.A. 1967. Silica in soils, plants, and animals. Adv. Agron., 19: 107–149.
  • 25. Knight C.T.G., Kinrade S.D. 2001. A primer on the aqueous chemistry of silicon. In: Silicon in Agriculture, Vol. 8, Studies in Plant Science. Datnoff, L.E., G.H. Snyder, and G.H. Korndörfer (eds.). Amsterdam, The Netherlands: Elsevier, 57–84.
  • 26. Kolesnikov M.P. 2001. Forms of Silicon in Nature. Successes of Biological Chemistry, 41: 301–332 (In Russian).
  • 27. Kozlov A.V., Uromova I.P., Frolov E.A., MozolevaK.Yu.(2015. Physiological Value Of Silicon In Ontogenesis Of Cultural Plants And At Their Protection Against Phytopathogens. The Nizhniy Novgorod State Pedagogical University n.a. K. Minin1: 39.
  • 28. Landré A., Cornu S., Meunier J., Guerin A., Arrouays D., Caubet, M., Saby N.P.A. 2020. Do climate and land use affect the pool of total silicon concentration? A digital soil mapping approach of frenchtopsoils.Geoderma, 364doi:10.1016/j. geoderma.
  • 29. LipmanC.B. 1938. Importance of silicon, aluminum and chlorine for higher plants. Soil Sci. 45: 189–198.
  • 30. Long Jiang-xue, Cheng Hui-yan, Dai Zhi-neng, Liu Jian-fu. 2018. The Effect of Silicon Fertilizer on The Growth of Chives. IOP Conference Series: Earth and Environmental Science, Volume 192: 1–6.
  • 31. Lysenko M.P. 1978. Loesses: Composition and Engineering Properties. Leningrad, Nedra, pp.208.
  • 32. Makabe S., Kakuda K., Sasaki Y. et al. 2009.Relationship between mineral composition or soil texture and available silicon in alluvial paddy soils on the Shounai Plain, Japan. Soil Sci Plant Nutr 55: 300–308.
  • 33. Matichencov V.V., Bocharnikova E.A. 2001. The relationship between silicon and soil physical and chemical properties. In: Silicon in Agriculture, Vol. 8, Studies in Plant Science. Datnoff L. E., G.H. Snyder, and G. H. Korndörfer (eds.). Amsterdam, The Netherlands: Elsevier, 209–219.
  • 34. Maxwell W. 1898. Lavas and Soils of the Hawaiian Islands. Hawaii. Honolulu: Hawaiian Sugar Planters’ Association, pp. 186.
  • 35. Meunier J.D., Guntzer F., Kirman S. 2008. Terrestrial plant-Si and environmental changes. Mineral. Mag., 72: 263–267.
  • 36. Meyer J.H., Keeping M.G. 2001. Past, present and future research of the role of silicon for sugar cane in southern Africa. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in agriculture. Elsevier, Amsterdam, pp. 257–275.
  • 37. Miyake, K., Adachi, M. (1922). Chemischeuntersuchungen uber die widerstandsfahigkeit der reisartengegen die “Imochikrankheit”. J. Biochemistry. Tokyo, 1 (2): 223–229.
  • 38. Nedukha O.M. 2019. Participation of ions of silicon in adaptation of plants to adverse factors. The bulletin of Kharkiv national agrarian university. Series biology 2 (47): 23–38. (In Ukrainian).
  • 39. Onodera I. 1917. Chemical studies on rice blast. J. of the Scientific Agric. Soc., 180: 606.
  • 40. Orlov D.S., Sadovnikova L.K., Suhanova M.I. 2005. Soil Chemistry. Textbook, Мoskow, Higher Education. – 558 p. (In Russian).
  • 41. Richmond K.E., Sussman M. 2003. Got silicon? The non-essential beneficial plant nutrient. Curr. Opin. Plant Biol., 6: 268–272.
  • 42. Rothamsted Experimental Station. 1992. Guide to the Classical Experiment. Details and Guides to the Rothamsted Experiments. Institute of Arable Crops Research Harpenden, Lawes Agricultural Trust, HERTS, pp. 35.
  • 43. Samofalova I.A. 2009. Chemical composition of soil and parent materials. Textbook, Perm, Permskaya SAA, 132 pp. (In Russian).
  • 44. Savant N.K., Snyder G.H., Datnoff L.E. 1997. Silicon management and sustainable rice production. Adv Agron 58: 151–199.
  • 45. Savant N.K., Datnoff L.E., Snyder G.H. 1997. Depletion of plant-available silicon in soils: A possible cause of declining rice yields. Commun. Soil Sci. Plant Anal. 28: 1145–1152.
  • 46. Snyder G.H., Jones D.B., GaschoG.J. 1986. Silicon fertilization of rice on Everglades Histosols. Soil Sci Soc Am J 50: 1259–1263.
  • 47. Suzuki H. 1934. Studies on the Influence of some environmental factors on the susceptibility of the rice plant to blast and hemlminthosporim diseases, and on the anatomical characters of the plant. J. Coll. Agric., 13 (1): 45–108.
  • 48. Titova V.I., Dabahova E.V., DabahovM.V. 2011. Agroand biochemical methods of investigation of agroecosystems stage. Manual for higher educational institutions. N.Novgorod, 73–84. (In Russian).
  • 49. Tonkha O.L., SychevskyiS.O., PikovskayaO.V, Kovalenko V.P. 2018. Modern approach in farming based on estimation of soil properties variability/ 12th International Conference on Monitoring of Geological Processes and Ecological Condition of the Environment, 68–74.
  • 50. Tubana B.S., Heckman J.R., Silicon in Soils and Plants In: Rodriges F.A., Datnoff L.E. (eds). 2015. Silicon and Plant Diseases, DOI 10.1007/978–3–319–22930–0_2 Springler International Publishing Switzerland, pp. 7–51.
  • 51. Voronkov M.G., KuznetsovI.G. 1984. Silicon in Nature. Seria: People and Environment. Novosibirsk, Nauka, pp. 157 (In Russian).
  • 52. White A.F. 1995. Chemical weathering rates of silicate minerals in soils. In: White A. F., and S.L Brantley. (eds.) Chemical Weathering Rates of Silicate Minerals. Rev. Min. 31: 407–461.
  • 53. Williams L.A., Crerar D.A. 1985. Silica diagenesis. II. General mechanisms. J Sed Pet 55:312–321 Winslow MD (1995) Silicon: A new macronutrient deficiency in upland rice. Working document No 10. International Center of Tropical Agriculture, Cali.
  • 54. Yoshida S., Onishi Y., Kitagishi K. 1959. The chemical nature of silicon in rice plant. Soil and Plant Food , 5 (1): 23–27.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-16111de4-0629-49f7-b070-40419eb4109e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.