PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Initiation Strategy of Aimable Warhead Based on Asynchronous Initiation between Lines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Asymmetrically initiated (AI) warhead has been widely used to strike air targets. To improve the accuracy and power of AI warhead, asynchronous initiation between lines was proposed. The power and dispersion characteristics of prefabricated fragments under different initiation schemes were studied by LS-DYNA simulation. The results show that asynchronous initiation between lines can regulate fragment velocity and its distribution by changing the trajectory and action position of the high-pressure area. The results of preferred strategies under sextile asynchronous initiation are similar to or even better than that of simultaneous initiation under 12 quantiles. The accuracy can be improved from 30° to 15° by setting a single delay of 1.109 μs under sextile initiation. Compared with the single point initiation, the gain of the maximum initial velocity is 19.0-25.3% under the asynchronous initiation strategy between lines. The maximum deviation of fragments orientation azimuth and flight direction are both 1.4°.
Rocznik
Strony
80--107
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, China
  • Shandong Institute of Non-metal Materials, China
autor
  • China Airborne Missile Academy, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, China
Bibliografia
  • [1] Waggener, S. The Evolution of Air Target Warheads. Proc. 23th Int. Symp. Ballistics, Tarragona, Spain, 2007, pp. 67-75.
  • [2] Waggener, S. Relative Performance of Anti-Air Missile Warheads. Proc. 19th Int. Symp. Ballistics, Interlaken, Switzerland, 2001, pp. 7-11.
  • [3] Li, Y.; Xiong, S.; Li, X.; Wen, Y.Q. Mechanism of Velocity Enhancement of Asymmetrically Two Lines Initiated Warhead. Int. J. Impact Eng. 2018, 122: 161-174; https://doi.org/10.1016/j.ijimpeng.2018.07.011.
  • [4] Held, M. Fuze Sensor Requirements of the Different Aimable Anti Air Warhead Layouts. Proc. 23th Int. Symp. Ballistics, Tarragona, Spain, 2007, pp. 16-20.
  • [5] Xia, H.J.; Cui, Z.Z.; Zhou, R.J. Overall Technology of Proximity Detection and Damage Control. Beijing Institute of Technology Press, Beijing, 2019, pp. 239-253; ISBN 9787568271899.
  • [6] Shen, H.M.; Li, W.B.; Wang, X.M. Velocity Distribution of Fragments Resulted by Explosion of a Cylindrical Shell Charge on multi-Spots Eccentric Initiation. (in Chinese) Explos. Shock Waves 2017, 37(6): 1039-1045.
  • [7] Xu, H.Y.; Li, W.B.; Li, W.B.; Zhang, Q.; Wang, Y.J.; Hong, X.W. Fracture Mechanism of a Cylindrical Shell Cut by Circumferential Detonation Collision. Def. Technol. 2021, 17: 1650-1659; https://doi.org/10.1016/j.dt.2020.09.006.
  • [8] Guo, Z.W.; Huang, G.Y.; Zhu, W.; Feng, S.S. The Fragmentation of D-shaped Casing Filled with Explosive under Eccentric Initiation. Def. Technol. 2018, 14: 417-421; https://doi.org/10.1016/j.dt.2018.06.006.
  • [9] Dhote, K.D.; Murthy, K.P.S.; Rajan, K.M.; Sucheendran, M.M. Directional Warhead Design Methodology for a Tailored Fragment Beam. Cent. Eur. J. Energ. Mater. 2015, 12(4): 637-649.
  • [10] Wang, S.S.; Ma, X.F.; Sui, S.Y.; Jang, Z.H. Experimental Research on Fragments Dispersion of the Warhead Under Asymmetrical Multi-Spots Initiation. (in Chinese) Trans. Beijing Inst. Technol. 2001, 2: 177-179.
  • [11] Li, Y.; Li, Y.H.; Liu, C.; Wen, Y.Q. The Initiation Parameter of Detonation Wave Aiming Warhead. Chin. J. Energ. Mater. 2016, 24(9): 915-921; https://doi.org/10.11943/j.issn.1006-9941.2016.09.017.
  • [12] Li, Y.; Wen, Y. Experiment and Numerical Modeling of Asymmetrically Initiated Hexagonal Prism Warhead. Adv. Mech. Eng. 2017, 9(1): 1-14; https://doi.org/10.1177/1687814016687966.
  • [13] Deng, H.; Quan, J.L.; Liang, Z.F. Influence of Eccentric Initiation on Energy Distribution Gain of Warhead Charge. (in Chinese) Explos. Shock Waves 2022, 42(5): 62-74.
  • [14] Earl, E. Selectable Initiation-point Fragment Warhead. Patent US 4658727, 1987.
  • [15] Cunard, D.A.; Thomas, K.A. Programmable Integrated Ordnance Suite (PIOS). Proc. 1st Annu. Int. Missiles and Rockets Exhibition, 1992.
  • [16] Liu, C.; Li, Y.; Li, Y.H.; Wen, Y.Q. Influence of Eccentric Initiation Ways on Fragment Dispersion Rule of Prismatic Aimable Warhead. Chin. J. Energ. Mater. 2017, 25(1): 63-68.
  • [17] Zhang, H.Y.; Zhang, S.K.; Cheng, L.; Li, Y.; Wen, Y.Q.; Zhang, Z.W. The Impact of Initiation Mode of Blast Fragmentation Warhead on the Power to Kill the Ground Target. (in Chinese) Acta Armamentarii 2021, 42(11): 2300-2309; https://doi.org/10.3969/j.issn.1000-1093.2021.11.002.
  • [18] Zhang, B.P.; Zhang, Q.M.; Huang, F.L. Detonation Physics. Weapon Industry Press, Beijing, 2009, pp. 189-196; ISBN 9787802483859.
  • [19] Zhang, S.K.; Wang, K.W.; Xie, J.L.; Li, X.G.; Zhang, H.Y.; Cheng, L. Influence of In-line Asynchronous Initiation on Warhead Damage Efficiency. (in Chinese) Chin. J. Explos. Propellants 2022, 45(01): 73-80.
  • [20] Li, Y.; Li, Y.H.; Wen, Y.Q. Radial Distribution of Fragment Velocity of Asymmetrically Initiated Warhead. Int. J. Impact Eng. 2017, 99: 39-47; https://doi.org/10.1016/j.ijimpeng.2016.09.007.
  • [21] Huang, Z.X.; Zu, X.D. Terminal Effects. Science Press, Beijing, 2014, pp: 111-125; ISBN 9787030423801.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-160bbe01-f849-449f-9453-4c891d1287a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.