Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Wydawca
Czasopismo
Rocznik
Tom
Strony
11--18
Opis fizyczny
Bibliogr. 57 poz., rys.
Twórcy
autor
- Zakład Immunologii Komórkowej, Instytut Mikrobiologii, Biotechnologii i Immunologii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, ul. Banacha 12/16, 90-237 Łódź
autor
- Pracownia Biologii Zakażeń, Instytut Mikrobiologii, Biotechnologii i Immunologii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, ul. Banacha 12/16, 90-237 Łódź
autor
- Pracownia Gastroimmunologii, Katedra Immunologii i Biologii Infekcyjnej, Instytut Mikrobiologii, Biotechnologii i Immunologii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, ul. Banacha 12/16, 90-237 Łódź
autor
- Pracownia Gastroimmunologii, Katedra Immunologii i Biologii Infekcyjnej, Instytut Mikrobiologii, Biotechnologii i Immunologii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, ul. Banacha 12/16, 90-237 Łódź
autor
- Zakład Immunologii Komórkowej, Instytut Mikrobiologii, Biotechnologii i Immunologii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, ul. Banacha 12/16, 90-237 Łódź
autor
- Pracownia Gastroimmunologii, Katedra Immunologii i Biologii Infekcyjnej, Instytut Mikrobiologii, Biotechnologii i Immunologii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, ul. Banacha 12/16, 90-237 Łódź
autor
- Pracownia Biologii Zakażeń, Instytut Mikrobiologii, Biotechnologii i Immunologii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Łódzki, ul. Banacha 12/16, 90-237 Łódź
Bibliografia
- [1] Athanasopoulos A.N, Economopoulou M., Orlova V.V., Sobke A., Schneider D., Weber H., Augustin H. G., Eming S.A., Schubert U., Linn T., Nawroth P.P., Hussain M., Hammes H.P., Herrmann M., Preissner K.T., Chavakis T. The extracellular adherence protein (Eap) of Staphylococcus aureus inhibits wound healing by interfering with host defense and repair mechanisms. Blood. 2006; 107(7): 2720-2727.
- [2] Atherton J.C., Blaser M.J. 2009. Coadaptation of Helicobacter pylori and humans: ancient history, modern implications. J. Clin. Invest., 119(9): 2475-2487.
- [3] Basset C., Holton J., Rachel O’Mahony, Roitt I. Innate immunity and pathogen-host interactions. Vaccine. 2003; 21: 12-23.
- [4] Baxt L.A., Garza-Mayers A.C., Goldberg M.B. Bacterial subversion of host innate immune pathways. Science. 2013;340(6133): 697-701.
- [5] Boyle-Vavra S., Daum R.S. Community-acquired methicillin-resistant Staphylococcus aureus: the role of Panton–Valentine leukocidin. Lab Invest. 2007; 87: 3-9.
- [6] Budzyńska A., Więckowska-Szakiel M., Sadowska B., Kalemba D., Różalska B. Antibiofilm activity of selected plant essential oils and their major components. Pol J Microbiol. 2011; 60(1): 35-41.
- [7] Chałubiński M., Wojdan K., Dorantowicz R., Jackowska P., Gorzelak P., Broncel M. 2012. Comprehensive insight into immune regulatory mechanisms and vascular wall determinants of atherogenesis – emerging perspectives of immunomodulation. Arch Med Sci, 9,1: 159-165.
- [8] Chmiela M., Gajewski A., Rudnicka K. 2015. Helicobacter pylori vs coronary heart disease – searching for connections. World J Cardiol, 7: 187-203.
- [9] Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998; 393(6685): 537-544.
- [10] Correa P., Piazuelo M.B. 2012. Evolutionary history of the Helicobacter pylori genome: implications for gastric carcinogenesis. Gut Liver, 6(1): 21-28.
- [11] Cullen T.W., Giles D.K., Wolf L.N., Ecobichon C., Boneca I.G., Trent M.S. 2011. Helicobacter pylori versus the host: remodelling of the bacterial outer membrane is required for survival in the gastric mucosa. PLoS Pathogens, 7(12): e1002454.
- [12] Daniel TM. The history of tuberculosis. Respir Med. 2006; 100(11): 1862-1870.
- [13] Diacovich L., Gorvel J.P. Bacterial manipulation of innate immunity to promote infection. Nat Rev Microbiol. 2010; 8(2): 117-28.
- [14] Dorhoi A, Reece ST, Kaufmann SH. For better or for worse: the immune response against Mycobacterium tuberculosis balances pathology and protection. Immunol Rev. 2011; 240(1): 235-251.
- [15] Falush D., Wirth T., Linz B., Pritchard J.K., Stephens M., Kidd M., Blaser M.J., Graham D.Y., Vacher S., Perez-Perez G.I., Yamaoka Y., Megraud F., Otto K., Reichard U., Katzowitsch E., Wang X., Achtman M., Suerbaum S. Traces of human migrations in Helicobacter pylori.
- [16] Fijałkowski K., Czernomysy-Furowicz D., Ferlas M. Staphylococcus aureus kontra układ immunologiczny, Post Mikrobiol.2008; 47(2): 497-511.
- [17] Forrellad MA, Klepp LI, Gioffre A, Sabio y Garcia J, Morbidoni HR, de la Paz Santangelo M, Cataldi AA, Bigi F. Virulence factors of the Mycobacterium tuberculosis complex. Virulence. 2013; 4(1): 3-66.
- [18] Gengenbacher M, Kaufmann SH. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol Rev. 2012; 36(3): 514-532.
- [19] Gilbreath J.J., Cody W.L., Merrell D.S., Hendrixson D.R. 2011. Change is good: variations in common biological mechanisms in the epsilonproteobacterial genera Campylobacter and Helicobacter. Microbiol. Mol. Biol. Rev., 75(1): 84-132.
- [20] Global tuberculosis report. WHO.
- [21] Grebowska A., Moran A.P., Bielanski W., Matusiak A., Rechcinski T., Rudnicka K., Baranowska A., Rudnicka W., Chmiela M. Helicobacter pylori lipopolysaccharide activity in human peripheral blood mononuclear leukocyte cultures. J Physiol Pharmacol. 2010; 61(4): 437-42.
- [22] Grebowska A., Moran A.P., Matusiak A., Bak-Romaniszyn L., Czkwianianc E., Rechciński T., Walencka M., Płaneta-Małecka I., Rudnicka W., Chmiela M. Anti-phagocytic activity of Helicobacter pylori lipopolysaccharide (LPS)-possible modulation of the innate immune response to these bacteria. Pol J Microbiol. 2008; 57(3): 185-92.
- [23] Gupta A, Kaul A, Tsolaki AG, Kishore U, Bhakta S. Mycobacterium tuberculosis: immune evasion, latency and reactivation. Immunobiology. 2012; 217(3): 363-374.
- [24] Gutierrez MC, Brisse S, Brosch R, Fabre M, Omais B, Marmiesse M, Supply P, Vincent V. Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog. 2005; 1(1): e5.
- [25] Hair P.S., Echague C.G., Sholl A.M., Watkins J.A., Geoghegan J.A., Foster T.J., Cunnion K.M. Clumping factor A interaction with complement factor I increases C3b cleavage on the bacterial surface of Staphylococcus aureus, and decreases complement-mediated phagocytosis. Infect Immun. 2010; 78(4): 1717-1727.
- [26] Helbin W., Polakowska K., Międzobrodzki J. Czynniki wirulencji Staphylococcus aureus zależne od bakteriofagów, Post Mikrobiol. 2012; 51(4): 291-298.
- [27] Itoh S, Hamada E, Kamoshida G, Takeshita K, Oku T, Tsuji T. Staphylococcal superantigen-like protein 5 inhibits matrix metalloproteinase 9 from human neutrophils. Infect Immun. 2010; 78(7): 3298-3305.
- [28] Jann N.J., Schmaler M., Ferracin F., Landmann R. TLR2 enhances NADPH oxidase activity and killing of Staphylococcus aureus by PMN. Immunol Lett. 2011; 135(1-2): 17-23.
- [29] Johannessen M., Sollid J.E., Hanssen A.-M. Host and microbe determinants that may influence the success of S. aureus colonization. Frontiers tuberculoin Cellular and Infection Microbiology, vol. 2, s. 1-14, 2012.
- [30] Kamada N., Seo S.U., Chen G.Y., Nunez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013 May;13(5):321-35. doi: 10.1038/nri3430.
- [31] Kelly D., Mulder I.E.. Microbiome and immunological interactions. Nutr Rev. 2012, Suppl 1: S18-30.
- [32] Kim H.K., Thammavongsa V., Schneewind O., Missiakas D. Reccurent infections and immune evasion strategies of Staphylococcus aureus. Curr Opin Microbiol. 2012; 15(1): 92-99.
- [33] Leid JG, Cope E. Population level virulence in polymicrobial communities associated with chronic disease. Front Biol. 2011; 6(6): 435-445.
- [34] Lessa F.C., Gould C.V., McDonald L.C. Current status of Clostridium difficile infection epidemiology. Clin Infect Dis. 2012;55 Suppl 2:S65-70.
- [35] Maloney E, Lun S, Stankowska D, Guo H, Rajagoapalan M, Bishai WR, Madiraju MV. Alterations in phospholipid catabolism in Mycobacterium tuberculosis lysX mutant. Front Microbiol. 2011; 2: 19.
- [36] Maloney E, Stankowska D, Zhang J, Fol M, Cheng QJ, Lun S, Bishai WR, Rajagopalan M, Chatterjee D, Madiraju MV. The two-domain LysX protein of Mycobacterium tuberculosis is required for production of lysinylated phosphatidylglycerol and resistance to cationic antimicrobial peptides. PLoS Pathog. 2009; 5(7): e1000534.
- [37] Matusiak A., Chałubiński M., Broncel M., Rechciński T., Rudnicka K., Miszczyk E., Walencka M., Strapagiel D., Gajewski A., Chmiela M. 2014. Putative consequences of exposure to H. pylori infection in patients with coronary heart disease (CHD) in terms of humoral immune response and inflammation. Arch Med Sci, w druku.
- [38] Micota B., Sadowska B., Podsędek A., Redzynia M., Rożalska B. Leonurus cardiaca L. herb – a derived extract and an ursolic acid as a factor affecting the adhesion capacity of Staphylococcus aureus in the context of infective endocarditis. Acta Biochim Pol. 2014; 61(2): 385-388.
- [39] Miszczyk E., Rudnicka K., Moran A.P., Fol M,. Kowalewicz-Kulbat M., Druszczyńska M., Matusiak A., Walencka M., Rudnicka W., Chmiela M.. Interaction of Helicobacter pylori with C-type lectin dendritic cell-specific ICAM grabbing nonintegrin. J Biomed Biotechnol. 2012;2012:206463.
- [40] Miszczyk E., Walencka M., Mikołajczyk-Chmiela M., „Modele zwierzęce w badaniach nad przebiegiem zakażeń Helicobacter pylori”. Postepy Hig Med Dosw 2014; 68: 603-615.
- [41] Neill SD, Skuce RA, Pollock JM. Tuberculosis – new light from an old window. J Appl Microbiol. 2005; 98: 1261-1269.
- [42] Oertali M., Muller A. 2012. Helicobacter pylori targets dendritic cells to induce immune tolerance, promote persistence and confer protection against allergic asthma. Gut Microbes, 3(6): 566–571.
- [43] Ottenhoff TH. The knowns and unknowns of the immunopathogenesis of tuberculoin sis. Int J Tuberc Lung Dis. 2012; 16(11): 1424-1432.
- [44] Otto M. Staphylococcal biofilms. Curr Top Microbiol Immunol. 2008; 322: 207-228.
- [45] Perry A., Lambert P. Propionibacterium acnes: infection beyond the skin. Expert Rev Anti Infect Ther. 2011; 9(12): 1149-56.
- [46] Pieters J. Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe. 2008; 3(6): 399-407.
- [47] Prescott S.L. Early-life environmental determinants of allergic diseases and the wider pandemic of inflammatory noncommunicable diseases. J Allergy Clin Immunol. 2013;131(1): 23-30.
- [48] Rudnicka K., Matusiak A., Miszczyk E., Rudnicka W., Tenderenda M., Chmiela M. Immunophenotype of peripheral blood natural killer cells and IL-10 serum levels in relation to Helicobacter pylori status. APMIS. 2013 Jun 12. doi: 10.1111/apm.12120. [Epub ahead of print].
- [49] Rudnicka K., Włodarczyk M., Moran A.P., Rechciński T., Miszczyk E., Matusiak A., Szczęsna E., Walencka M., Rudnicka W., Chmiela M. Helicobacter pylori antigens as potential modulators of lymphocytes’ cytotoxic activity. Microbiol Immunol. 2012; 56(1): 62-75.
- [50] Rudnicka K., Graczykowski M., Tenderenda M., Chmiela M. Formy morfologiczne Helicobacter pylori i ich przypuszczalna rola w transmisji zakażeń. Postęp Hig Med Dos, 2014; 68: 227-237.
- [51] Rudnicka W. Molekularne mechanizmy odporności na gruźlicę. Post Mikrobiol. 2004; 43: 107-127.
- [52] Sadowska B., Paszkiewicz M., Podsędek A., Redzynia M., Rożalska B. Vaccinium myrtillus leaves and Frangula alnus bark derived extracts as potential antistaphylococcal agents. Acta Biochim Pol.2014; 61(1): 163-169.
- [53] Sadowska B., Rożalska B. Gronkowce – na co jeszcze je stać? Post Mikrobiol. 2010; 49(3): 173-178.
- [54] Saunders BM, Britton WJ. Life and death in the granuloma: immunopathology of tuberculosis. Immunol Cell Biol. 2007; 85(2): 103-111.
- [55] Schafer G, Jacobs M, Wilkinson RJ, Brown GD. Non-opsonic recognition of Mycobacterium tuberculosis by phagocytes. J Innate Immun. 2009; 1(3): 231-243.
- [56] Smagur J., Guzik K., Magiera L., Bzowska M., Gruca M., Thogersen I.B., Enghild J.J., Potempa J. A new pathway of staphylococcal pathogenesis: apoptosis-like death induced by staphopain B in human neutrophils and monocytes. J Innate Immun. 2009; 1(2): 98-108.
- [57] Szymanek-Majchrzak K., Młynarczyk A., Młynarczyk G. Oporność Staphylococcus aureus na glikopeptydy. Post Mikrobiol. 2013; 52(2): 171-184.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-160bb751-9cd2-4926-81d7-c24d94ba058a