PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface texture analysis after ball end milling with various surface inclination of hardened steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, an analysis of various factors affecting machined surface texture is presented. The investigation was focused on ball end mill inclination against the work piece (defined by surface inclination angle α. Surface roughness was investigated in a 3D array, and measurements were conducted parallel to the feed motion direction. The analysis of machined surface irregularities as a function of frequency (wavelength λ), on the basis of the Power Density Spectrum - PDS was also carried out. This kind of analysis is aimed at valuation of primary factors influencing surface roughness generation as well as its randomness. Subsequently, a surface roughness model including cutter displacements was developed. It was found that plain cutting with ball end mill (surface inclination angle α = 0°) is unfavorable from the point of view of surface roughness, because in cutter’s axis the cutting speed νc ≈ 0 m/min. This means that a cutting process does not occur, whereas on the machined surface some characteristics marks can be found. These marks do not appear in case of α ≠ 0°, because the cutting speed νc ≠ 0 on the full length of the active cutting edge and as a result, the machined surface texture is more homogenous. Surface roughness parameters determined on the basis of the model including cutter displacements are closer to experimental data for cases with inclination angles α ≠ 0°, in comparison with those determined for plain cutting (α = 0°). It is probably caused by higher contribution in surface irregularities generation of plastic and elastic deformations cumulated near the cutter’s free end than kinematic and geometric parameters, as well as cutter displacements.
Słowa kluczowe
Rocznik
Strony
145--156
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
  • Poznan University of Technology, Faculty of Mechanical Engineering, Piotrowo 3, 60-965 Poznan, Poland
  • Poznan University of Technology, Faculty of Mechanical Engineering, Piotrowo 3, 60-965 Poznan, Poland
  • Poznan University of Technology, Faculty of Mechanical Engineering, Piotrowo 3, 60-965 Poznan, Poland
Bibliografia
  • [1] Becze, C.E., Clayton, P., Chen, L., El-Wardany, T.I., Elbestawi, M.A. (2000). High-speed fiveaxis milling of hardened tool steel. International Journal of Machine Tools & Manufacture 40, 869-885.
  • [2] Zhu, R., Kapoor, S.G., DeVor, R.E. (2001). Mechanistic Modeling of the Ball End Milling Process for Multi-Axis Machining of Free-Form Surfaces. Journal of Manufacturing Science and Engineering, 123, 369 - 379.
  • [3] Dewes, R.C., Aspinwall, D.K. (1997). A review of ultrahigh speed milling of hardened steels. Journal of Materials Processing Technology, 69, 1-17.
  • [4] Urbanski, J.P., Koshy, P., Dewes, R.C., Aspinwall, D.K. (2000). High speed machining of moulds and dies for net shape manufacture. Materials and design, 21, 395 - 402.
  • [5] Nieminen, I., Paro, J., Kaupinnen, V. (1993). High-speed milling of advanced materials. In Proc. of the International Conference on Advances in Materials and Processing Technologies, Dublin, Ireland, 21-32.
  • [6] Fontaine, M., Devillez, A., Moufki, A., Dudzinski, D. (2006). Predictive force model for ball-end milling and experimental validation with a wavelike form machining test. International Journal of Machine Tools & Manufacture, 46, 367-380.
  • [7] Lamikiz, A., Lopez de Lacalle, L.N., Sanchez, J.A., Salgado, M.A. (2004). Cutting force estimation in sculptured surface milling. International Journal of Machine Tools & Manufacture, 44, 1511-1526.
  • [8] Toh, C.K. (2004). A study of the effects of cutter path strategies and orientations in milling. Journal of Materials Processing Technology, 152, 346-356.
  • [9] Lopez de Lacalle, L.N., Lamikiz, A., Sanchez, J.A., Arana, J.L. (2002). Improving the surface finish in high speed milling of stamping dies. Journal of Materials Processing Technology, 123, 292-302.
  • [10] Ko, T., Kim, J.H.S., Lee, S.S. (2001). Selection of the Machining Inclination Angle in High- Speed Ball End Milling. Int J Adv Manuf Technol., 17, 163-170.
  • [11] Schmitz, T.L., Couey, J., Marsh, E., Mauntler, N., Hughes, D. (2007). Runout effects in milling: Surface finish, surface location error, and stability. International Journal of Machine Tools & Manufacture, 47, 841-851.
  • [12] Przestacki, D, Jankowiak, M. (2011). Investigation of temperature gradient during surface heating by laser beam. Archives of Mechanical Technology and Automation, 31(2), 135 - 142.
  • [13] Wojciechowski, S., Twardowski, P. (2011). Machined surface roughness in the aspect of milling process dynamics. In Proc. of the 13th International Conference on Metrology and Properties of Engineering Surfaces, 12 - 15 April, Twickenham Stadium, Great Britain, 87 - 91.
  • [14] Wojciechowski, S. (2011). Machined surface roughness including cutter displacements in milling of hardened steel. Metrol. Meas. Syst., 18(3), 429-440.
  • [15] Twardowski, P., Wojciechowski, S., Wieczorowski, M., Mathia, T. G. (2011). Selected Aspects of High Speed Milling Process Dynamics Affecting Machined Surface Roughness of Hardened Steel, Scanning, 33, 386-395.
  • [16] Brammertz, P. H. (1961) Die entstehung der oberflachenrauheit beim feindrehen. Industrie Anzeiger, 2, 5 - 32.
  • [17] Jankowiak, M. (1990). Estimation of minimum thickness of undeformed chip during microcutting of hardened steel. Archiwum Technologii Budowy Maszyn, 8, 387 - 393.
  • [18] Kawalec, M. (1990). Cutting of hardened steel and cast iron using tools with defined geometry. Rozprawa nr 234, Politechnika Poznańska, Poznań.
  • [19] Baptista, R., Antune Simoes, J. F. (2000). Three and five axes milling of sculptured surfaces. Journal of Materials Processing Technology, 103, 398 - 403.
  • [20] Antoniadis, A., Savakis, C., Bilalis, N., Balouktsis, A. (2003). Prediction of surface topomorphy and roughness in ball-end milling. International Journal of Advanced Manufacturing Technology, 21, 965-971.
  • [21] Jankowiak, M., Kawalec, M., Król, G. (1993). Analytical determination of the minimal thickness of the machined layer for various models of the cutting force components. Archives of Mechanical Technology and Automation, 11, 153 - 160.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15ff926f-4537-405d-8d9c-13cd60431fe7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.