PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Response due to impulsive force in generalized thermomicrostretch elastic solid

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A two dimensional Cartesian model of a generalized thermo-microstretch elastic solid subjected to impulsive force has been studied. The eigen value approach is employed after applying the Laplace and Fourier transforms on the field equations for L-S and G-L model of the plain strain problem. The integral transforms have been inverted into physical domain numerically and components of normal displacement, normal force stress, couple stress and microstress have been illustrated graphically.
Rocznik
Strony
487--502
Opis fizyczny
Bibliogr. 18 poz., wykr.
Twórcy
autor
  • Department of Mathematics Lovely Professional University, Punjab, INDIA
autor
  • Department of Mathematics S.G.A.D. Govt. College, Punjab, INDIA
Bibliografia
  • [1] Abbas I.A. and Othman M.I.A. (2012): Plane waves in generalized thermo-microstretch elastic solid with thermal relaxation using finite element method. – Int. J. Thermophys., vol.33, No.12, pp.2407-2423.
  • [2] Ciarletta M. (1999): A theory of micropolar thermoelasticity without energy dissipation. – J. Thermal Stresses, vol.22, pp.581-594.
  • [3] Eringen A.C. (1966): Linear theory of micropolar elasticity. – J. Math. Mech., vol.15, pp.909-923.
  • [4] Eringen A.C. (1970): Foundation of micropolar thermoelasticity. – Course of Lectures No.23.- Verlag: Springer.
  • [5] Eringen A.C. (1971): Micropolar elastic solids with stretch. – Ari. Kitabevi Matbassi, vol.24, pp.1-18.
  • [6] Eringen A.C. (1984): Plane waves in non-local micropolar elasticity. – Int. J. Eng. Sci., vol.22, pp.1113-1121.
  • [7] Eringen A.C. (1990): Theory of thermo-microstretch elastic solids. – Int. J. Eng. Sci., vol.28, pp.1291-1301.
  • [8] Green A.E. and Lindsay K.A. (1972): Thermoelasticity. – J. Elasticity, vol.2, pp.1-7.
  • [9] Green A.E. and Naghdi P.M. (1993): Thermoelasticity without energy dissipation. – J. Elasticity, vol.31, pp.189-208.
  • [10] Kumar R. and Partap G.(2009): Axisymmetric free vibrations in microstretch thermoelastic homogenous isotropic plate. – Int. J. of App. Mech. and Eng., vol.14, No.1, pp.211-237.
  • [11] Kumar R. and Deswal S. (2001): Disturbance due to mechanical and thermal sources in a generalized thermomicrostretch elastic space. – Sadhana, vol.26, No.6, pp.529-547.
  • [12] Kumar R., Singh R. and Chadha T.K. (2003): Plane strain problem in microstretch elastic solid. – Sadhana, vol.28, No.6, pp.975-990.
  • [13] Lord H.W. and Shulman Y. (1967): A generalized dynamical theory of thermoelasticity. – J. Mech. Phys. Solid, vol.15, pp.299-309.
  • [14] Lotfy K. and Othman M.I.A. (2012): Effect of rotation on plane waves in generalized thermo-microstretch elastic solid with a relaxation time. – Meccanica, vol.47, pp.1467-1486.
  • [15] Nowacki W. (1966): Couple stresses in the theory of thermoelasticity. - Proc. ITUAM Symposia, Vienna, Springer-Verlag, pp.259-278.
  • [16] Othman M.I.A. and Lotfy K. (2010): On the plane waves of generalized thermo-microstretch elastic half-space under three theories. – Int. Communications in Heat and Mass Transfer, vol.37, No.2, pp.192–200.
  • [17] Othman M.I.A. Atwa S.Y., Jahangir A. and Khan A. (2013): Effect of magnetic field and rotation on generalized thermo microstretch elstic solid with mode-I crack under Green Naghdi theory. – Computational Mathematics and Modeling, vol.24, No.4, pp.556-591.
  • [18] Press W.H. et al. (1986): Numerical Recipes in FORTRAN 2nd Edition. – Cambridge: Cambridge University Press.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15fb1081-8a95-4347-8bb5-ab29af6537c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.