PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-criteria analysis of the possibility of retrofitting the system of rainwater drainage from subsidence basins in a liquidated mine

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mine closure is the natural final stage of mining activity. The process of financing mine liquidation is complex and expensive. The many years of conducted hard coal extraction affect the surface height differences. Analyses of the shifts in hydrogeological conditions and water hazard states in mining plants led to legal regulation adaptations, primarily in terms of hydrogeological documentation preparation, and made it necessary to conduct work concerning new options for water hazard assessment and prevention. Current subjects of particular interest include shifts in terrain morphology and the water regime, resulting in periodic flooding and permanent flooding of the most depressed areas as well as changes in the directions and intensity of surface water flows. This publication presents a multi-criteria analysis of the possibility of reducing the liquidation costs of an inactive mine through the retrofitting of the existing system of rainwater drainage from subsidence basins. The analysis revealed the primary factors disrupting the course of the drainage process and the problems resulting from them. Technically feasible solutions is presented, together with their assessment. Applying the multi-criteria analysis made it possible to select optimal solutions from a group of proposed technical system retrofitting variants.
Rocznik
Strony
295--307
Opis fizyczny
Bibliogr. 50 poz.
Twórcy
  • Spółka Restrukturyzacji Kopalń S.A., Poland
  • Główny Instytut Górnictwa, Silesian Centre for Environmental Radioactivity, Poland
  • Główny Instytut Górnictwa, Społka Restrukturyzacji Kopaln S.A., Poland
Bibliografia
  • [1] Xu WD, Burns MJ, Cherqui F, Duchesne S, Pelletier G, Fletcher TD. Real-time controlled rainwater harvesting systems can improve the performance of stormwater networks. J Hydrol 2022;56(9). https://doi.org/10.1029/2020WR027856.
  • [2] Edraki M, Baumgartl T, David Mulligan, Fegan W, Munawar A. Geochemical characteristics of rehabilitated tailings and associated seepages at Kidston gold mine, Queensland, Australia. Int J Min Reclamat Environ 2019; 33(1):1-15. https://doi.org/10.1080/17480930.2017.1362542.
  • [3] Ye-Shuang X, Shui-Long S, Yue L, An-Nan Z. Design of sponge city: lessons learnt from an ancient drainage system in Ganzhou, China. J Hydrol 2018;563:900-8. https://doi.org/10.1016/j.jhydrol.2018.06.075.
  • [4] Vitale C. Understanding the shift toward a risk-based approach in flood risk management, a comparative case study of three Italian rivers. Environ Sci Pol 2023;146:13-23. https://doi.org/10.1016/j.envsci.2023.04.015.
  • [5] Wang H, Zhou J, Tang Y, Liu Z, Kang A, Chen B. Flood economic assessment of structural measure based on integrated flood risk management: a case study in Beijing. J Environ Manag 2021 Feb 15;280:111701. https://doi.org/10.1016/j.jenvman.2020.111701.
  • [6] Zhao D, Zha J, Wu J. Changes in rainfall of different intensities due to urbanization-induced land-use changes in Shenzhen, China. Clim Dynam 2021;56(7-8):2509-30. https://doi.org/10.1007/s00382-020-05601-y.
  • [7] Esmaiel A, Abdrabo KI, Saber M, Sliuzas RV, Atun F, Kantoush SA, et al. Integration of flood risk assessment and spatial planning for disaster management in Egypt. Prog. Disaster Sci. 2022;146:13-23. https://doi.org/10.1016/j.envsci.2023.04.015.
  • [8] Garda-Avila F, Guanoquiza-Suarez M, Guzman-Galarza J, Cabello-Torres R, Valdiviezo-Gonzales L. Rainwater harvesting and storage systems for domestic supply: an overview of research for water scarcity management in rural areas. Results Eng 2023;18:101153. https://doi.org/10.1016/j.rineng.2023.101153.
  • [9] Rauter M, Kaufmann M, Thaler T, Fuchs S. Flood risk management in Austria: analysing the shift in responsibilitysharing between public and private actors from a public stakeholder's perspective. Land Use Pol 2020;9(1):105017. https://doi.org/10.1016/j.landusepol.2020.105017.
  • [10] Juma B, Olang LO, Hassan MA, Mulligan J, Shiundu PM. Simulation of flood peak discharges and volumes for flood risk management in the ungauged urban informal settlement of Kibera, Kenya. Phys. Chem. Earth. A/B/C 2022;128: 103236. https://doi.org/10.1016/j.pce.2022.103236.
  • [11] Klijn F, Marchand M, Meijer K, van der Most H, Stuparu D. Tailored flood risk management: accounting for socio-economic and cultural differences when designing strategies. Water Secur 2021;12:100084. https://doi.org/10.1016/j.wasec.2021.100084.
  • [12] Rubio CJP, Yu I, Kim H, Kim S, Jeong SJ. An investigation of the adequacy of urban evacuation centers using index-based flood risk assessment. Korean Soc. Hazard Mitig. 2019;19(2): 197-207. https://doi.org/10.9798/KOSHAM.2019.19.2.197.
  • [13] Teston A, Teixeira CA, Ghisi E, Cardoso EB. Impact of rainwater harvesting on the drainage system: case study of a condominium of houses in curitiba, southern Brazil. Water 2018;10(8):1100. https://doi.org/10.3390/w10081100.
  • [14] Vafadarnikjoo A, Chalvatzis K, Botelho T, Bamford D. A stratified decision-making model for long-term planning: application in flood risk management in Scotland. Omega 2022;116:102803. https://doi.org/10.1016/j.omega.2022.102803.
  • [15] Verweij S, Busscher T, van den Brink M. Effective policy instrument mixes for implementing integrated flood risk management: an analysis of the ‘Room for the River’ program. Environ Sci Pol 2020;116:204-12. https://doi.org/10.1016/j.envsci.2020.12.003.
  • [16] Parjanne A, Rytko€nen AM, Veijalainen N. Framework for climate proofing of flood risk management strategies in Finland. Water Secur 2021;15(13):100096. https://doi.org/10.1016/j.wasec.2021.100096.
  • [17] Campisano A, Modica C. Rainwater harvesting as source control option to reduce roof runoff peaks to downstream drainage systems. J Hydroinf 2015;18(1):jh2015133. https://doi.org/10.2166/hydro.2015.133.
  • [18] Deitch MJ, Feirer ST. Cumulative impacts of residential rainwater harvesting on stormwater discharge through a peri-urban drainage network. J Environ Manag 2019;1(243): 127-36. https://doi.org/10.1016/j.jenvman.2019.05.018. Epub 2019 May 13.
  • [19] Pochwat K. Assessment of rainwater retention efficiency in urban drainage systems - model studies. Resour 2022;11(2): 14. https://doi.org/10.3390/resources11020014.
  • [20] Custodio DA, Ghisi E. Impact of residential rainwater harvesting on stormwater runoff. J Environ Manag 2022;326(BB): 116814. https://doi.org/10.1016/j.jenvman.2022.116814.
  • [21] Wise AFE, Swaffield J. Rainwater drainage. In: Water, sanitary and waste services for buildings. 5th ed. London UK: Routledge; 2002. https://doi.org/10.4324/9780080520797.
  • [22] Van Linden S, Van Den Bossche N. Review of rainwater infiltration rates in wall assemblies. Build Environ 2022;219(12): 109213. https://doi.org/10.1016/j.buildenv.2022.109213.
  • [23] Bera A, Prasad Mukhopadhyay B. Identification of suitable sites for surface rainwater harvesting in the drought prone Kumari River basin, India in the context of irrigation water management. J Hydrol 2023;621:129655. https://doi.org/10.1016/j.jhydrol.2023.129655.
  • [24] Li G, Xiong J, Zhu J, Liu Y, Dzakpasu M. Design influence and evaluation model of bioretention in rainwater treatment: a review. Sci Total Environ 2021;787(2):147592. https://doi.org/10.1016/j.scitotenv.2021.147592.
  • [25] Niu S, Wang T, Xia Y. Microplastic pollution in sediments of urban rainwater drainage system. Sci Total Environ 2023;868: 161673. https://doi.org/10.1016/j.scitotenv.2023.161673.
  • [26] Fajklewicz Z, Piwowarski W, Radominski J, Stewarski E, Tajduś A. Badanie deformacji w górotworze w celu odtwarzania wartości budowlanej terenów pogórniczych Investigating deformations in the rock mass to restore the building value of post-mining areas. Publishing House of AGH Kraków; 2004.
  • [27] Strzałkowski P, Scigała R. The causes of mining induced ground steps occurrence - case study from Upper Silesia in Poland. Acta Geodyn Geomater 2018;14(3):299-306. https://DOI:10.13168/AGG.2017.0013.
  • [28] Ignacy D. Metoda oceny zagrożenia zawodnieniem terenów górniczych i pogorniczych. Method of assessment of the flooding threat in mining and post-mining areas. Przeglad Gorn 2017;73(1):26-38.
  • [29] Bukowski P. Zagrozenia wodne w kopalniach węgla Zagłębiu Węglowym w dobie restrukturyzacji górnictwa kamiennego Water hazards in coal mines in the Coal Basin in the era of coal mining restructuring. 3/1. In: Górnictwo i Geoinzynieria, 31. Publishing House of AGH Kraków; 2007. p. 81-9.
  • [30] Mercado JMR, Kawamura A, Amaguchi H, Rubio CJP. Fuzzy based multi-criteria M&E of the integrated flood risk management performance using priority ranking methodology: a case study in Metro Manila, Philippines. Int. J. Disaster Risk Reduct 2021;64:102498. https://doi.org/10.1016/j.ijdrr.2021.102498.
  • [31] Bondaruk J, Janson E, Wysocka M, Chałupnik S. Identification of hazards for water environment in the Upper Silesian Coal Basin caused by the discharge of salt mine water containing particularly harmful substances and radionuclides. J Sustain Min 2015;14(4):179-87. https://doi.org/10.1016/j.jsm.2016.01.001.
  • [32] Łabaj P, Wysocka M, Janson E, Deska M. Application of the unified stream assessment method to determine the direction of revitalization of heavily transformed urban rivers. Water Resour 2020;47(4):521-9. https://doi.org/10.1134/S0097807820040120.
  • [33] Wysocka M, Chałupnik S, Chmielewska I, Janson E, Radziejowski W, Samolej K. Natural radioactivity in polish coal mines: an attempt to assess the trend of radium release into the environment. Mine Water Environ 2019;38:581-9. https://doi.org/10.1007/s10230-019-00626-0.
  • [34] Szpak A, Modrzynska J, Piechowiak. Resilience of Polish cities and their rainwater management policies. Urban Clim 2022; 44:101228. https://doi.org/10.1016/j.uclim.2022.101228.
  • [35] Chmiela A, Smoliło J, Gajdzik M. A multifaceted method of analyzing the amount of expenditures on mine liquidation processes in SRK S. A., Manag. Syst. Prod. 2022;30:130-9. https://doi.org/10.2478/mspe-2022-0016.
  • [36] Simon-Coinçon R, Spain AV, Milnes AR. Landform processes in the post coal-mining landscape, bowen basin, Australia. A geomorphological approach. Int J Min Reclamat Environ 2003; 17(1):20-50. https://doi.org/10.1076/ijsm.17.1.20.8628.
  • [37] Hu Z, Fu Y, Xiao W, Zhao Y, Wei T. Ecological restoration plan for abandoned underground coal mine site in Eastern China. Int J Min Reclamat Environ 2015;29(4). https://doi.org/10.1080/17480930.2014.1000645.
  • [38] Hudson P, Raska P, Machac J, Slavrkovâ L. Balancing the interaction between urban regeneration and flood risk management - a cost benefit approach in Ûsti nad Labem. Land Use Pol 2022;120:106272. https://doi.org/10.1016/j.landusepol.2022.106276.
  • [39] Chmiela A. The choice of the optimal variant of the mine liquidation due to the possibility of obtaining methane from goafs. Eur. J. Manag. 2023;8(3). https://doi.org/10.24018/ejbmr.2023.8.3.1947.
  • [40] Przybyła H, Chmiela A. Projektowanie rozwiązań techniczno-organizacyjnych stosowanych w wyrobiskach ścianowych (Design of technical and organisational solutions applied in longwall workings). Publishing House Silesian University of Technology Gliwice; 1997.
  • [41] Korski J, Korski W. Underground mine as a system of processes. Min. Inform. Autom. Electr. Eng.. 2015;2(522):19-27.
  • [42] Turek M. Analiza i ocena kosztów w górnictwie węgla kamiennego w Polsce (Analysis and evaluation of costs in hard coal mining in Poland). Difin Warszawa; 2013.
  • [43] Dudeney AWL, Chan BKC, Bouzalakos S, Huisman JL. Management of waste and wastewater from mineral industry processes, especially leaching of sulphide resources: state of the art. Int J Min Reclamat Environ 2013;27(1):2-37. https://doi.org/10.1080/17480930.2012.696790.
  • [44] Ortiz S, de Barros Barreto P, Castier M. Rainwater harvesting for domestic applications: the case of Asunción. Paraguay. Results Eng 2022;16:100638. https://doi.org/10.1016/j.rineng.2022.100638.
  • [45] Rodrigues de Sa Silva AC, Mendonça Bimbato A, Perrella Balestieri JA, Nogueira Vilanova MR. Exploring environmental, economic and social aspects of rainwater harvesting systems: a review. Sustain Cities Soc 2021;76:103475. https://doi.org/10.1016/j.scs.2021.103475.
  • [46] Puzyreva K, Henning Z, Schelwald R, Rassman H, Borgnino E, de Beus P, et al. Professionalization of community engagement in flood risk management: insights from four European countries. Int J Disaster Risk Reduc 2022;71(4): 102811. https://doi.org/10.1016/j.ijdrr.2022.102811.
  • [47] Narine Torres M, Fontecha JE, Zhu Z, Walteros JL, Rodriguez JP. A participatory approach based on stochastic optimization for the spatial allocation of Sustainable Urban Drainage Systems for rainwater harvesting. Environ Modell Softw 2019;123:104532. https://doi.org/10.1016/j.envsoft.2019.104532.
  • [48] Disse M, Johnson TG, Leandro J, Hartmann T. Exploring the relation between flood risk management and flood resilience. Water Secur 2020;9:100059. https://doi.org/10.1016/j.wasec.2020.10005.
  • [49] Ghorbani Y, How Kuan S. A review of sustainable development in the Chilean mining sector: past, present and future. Int J Min Reclamat Environ 2017;31(2). https://doi.org/10.1080/17480930.2015.1128799.
  • [50] Shahbaz A, Yan-Fang S. Implementing rainwater harvesting systems as a novel approach for saving water and energy in flat urban areas. Sustain Cities Soc 2022;89:104304. https://doi.org/10.1016/j.scs.2022.104304.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15f98a65-770b-48df-8ff5-71caf3980bb2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.