Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Influence of pH and Cellic® CTec2 enzymes dose on the glucose yield after enzymatic hydrolysis of cellulose at 50 °C. Cellulose obtained by the Kürschner-Hoffer method from the wood of 3-year-old poplar (Populus trichocarpa) was subjected to enzymatic hydrolysis. Cellic® CTec2 enzymes (Novozymes, Denmark) were used. The enzymatic hydrolysis was tested within the conditions recommended by the manufacturer and the literature. The process was carried out at 50 °C at various pH – 4.8, 5.0, 5.5 and enzymes doses - 25, 50 and 100 mg per 100 mg of the dry mass of cellulose. The process was ended after 24 h. The hydrolysates were analysed by high-performance liquid chromatography (HPLC) to determine the glucose content, and then the highest glucose yield. The highest glucose yield was obtained for pH 4.8 and 100 mg of enzymes per 100 mg of the dry mass of cellulose – 72 %.
Wpływ pH i ilości enzymu Cellic® CTec2 na wydajnośc glukozy po hydrolizie enzymatycznej celulozy w 50 °C. Celulozę otrzymaną metodą Kürschnera-Hoffera z drewna 3-letniej topoli Populus trichocarpa poddano hydrolizie enzymatycznej. Zastosowano enzymy Cellic® CTec2 (Novozymes, Dania). Hydrolizę enzymatyczną badano w warunkach zalecanych przez producenta i literaturę. Proces prowadzono w temperaturze 50 °C przy różnym pH - 4,8, 5,0, 5,5 i dawkach enzymu - 25, 50 i 100 mg na 100 mg suchej masy celulozy. Proces został zakończony po 24 godzinach. Hydrolizaty analizowano metodą wysokosprawnej chromatografii cieczowej (HPLC) w celu określenia zawartości glukozy, a następnie największej wydajności glukozy. Największą wydajność uzyskano dla pH 4,8 i 100 mg enzymu na 100 mg suchej masy celulozy - 72%.
Słowa kluczowe
Rocznik
Tom
Strony
52--59
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Department of Wood Science and Wood Protection, Warsaw University of Life Science – SGGW
Bibliografia
- 1. ASEM H.M., 2012: Conversion of lignocellulosic material into fermentable sugars. der Technischen Universität Berlin, PhD dissertation
- 2. BRACONNOT H., 1819: Hydrolysis of cellulose into sugar. Gilbert's Annalen der Physik, 63, 348
- 3. CANNELLA D., CHIA-WEN C. H., FELBY C., JØRGENSEN H., 2012: Production and effect of aldonic acids during enzymatic hydrolysis of lignocellulose at high dry matter content, Biotechnology for Biofuels., 5, 1, 26
- 4. CHANG V.S., NAGWANI M., KIM C.H., HOLTZAPPLE M.T., 2000: Oxidative lime pretreatment of high-lignin biomass: poplar wood and newspaper. Applied Biochemistry and Biotechnology, 94, 1, 1-28
- 5. DUFF S.J.B., MURRAY W.D., 1996: Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review. Bioresour. Technol., 55, 1–33
- 6. GAO J., ANDERSON D., LEVIE B., 2013: Saccharification of recalcitrant biomass and integration options for lignocellulosic sugars from Catchlight Energy’s sugar process (CLE Sugar). Biotechnology for Biofuels, 6, 1, 1
- 7. GHARPURAY M. M., LEE Y.H., FAN L.T., 1983: Structural modification of lignocellulosics by pretreatments to enhance enzymatic hydrolysis. Biotechnol. Bioeng., 25, 157-72
- 8. GUSAKOV A.V., SINITSYN A.P., 1992: A theoretical analysis of cellulase product inhibition: effect of cellulase binding constant, enzyme/substrate ratio, and betaglucosidase activity on the inhibition pattern. Biotechnol Bioeng., 40, 6, 663–71
- 9. HAMELINCK C.N., VAN HOOIJDONK G., FAAIJ A.P.C., 2005: Future prospects for the production of ethanol from ligno-cellulosic biomass. Biomass & Bioenergy, 28, 4, 384-410
- 10. HAYES D.J., FITZPATRICK S.W., HAYES M.H.B., ROSS J.R.H., 2005: The Biofine Process: Production of levulinic acid. furfural and formic acid from lignocellulosic feedstocks. w: KAMM B., GRUBER V.R., KAMM M. (eds) Biorefineries, Volume 1, Principles and Fundamentals. Wiley-VCH, 139-64
- 11. KIM D., 2018: Physico-Chemical Conversion of Lignocellulose: Inhibitor Effects and Detoxification Strategies: A Mini Review. Molecules, 1, 23
- 12. KÜRSCHNER K., HOFFER A., 1929: Ein neues Verfahren zur Bestimmung der Cellulose in Hölzern und Zellstoffen. Technol. Chem. Papier Zellstoff. Fabr., 26, 125– 9
- 13. LAN Q., LOU H., ZHU J. Y., 2013: Enzymatic Saccharification of Lignocelluloses Should be Conducted at Elevated pH 5.2–6.2, BioEnergy Research, 6, 2, 476–85
- 14. MOOD S.H., GOLFESHAN A.H., TABATABAEI M., JOUZANI G.S., NAJAFI G.H., GHOLAMI M., ARDJMAND M., 2013: Renewable Sustainable Energy Rev., 27, 77–9
- 15. NOVOZYMES, 2010: APPLICATION SHEET, Cellic® CTec2 and HTec2 – enzymes for hydrolysis of lignocellulosic materials
- 16. PAN X., GILKES N., SADDLER J.N., 2006: Effect of acetyl groups on enzymatic hydrolysis of cellulosic substrates. Holzforschung,60, 398–401
- 17. PROSIŃSKI S., 1984: Chemia drewna. Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa
- 18. RAMOS L.P., DA SILVA L., BALLEM A.C., PITARELO A.P., CHIARELLO L.M., SILVEIRA M.H.L., 2015: Enzymatic hydrolysis of steam-exploded sugarcane bagasse using high total solids and low enzyme loadings. Bioresource Technology, 175, 195-202
- 19. ROWE J.W., PEARL L.A., 1961: Progress in the chemical conversion and utilization of lignin. Forest. Prod. J., 11, 2, 85-107, za: Prosiński S. (1984). Chemia drewna. Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa
- 20. SÁNCHEZ O.J., CARDONA C.A., 2008: Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol., 99, 13, 5270-95
- 21. WENZEL H.F. Holzforschung 2, 23, 1954 i 4, 103, 1954 i 5, 129, 1959 za: PROSIŃSKI S., 1984: Chemia drewna PWRiL Warszawa
- 22. XIMENES E., KIM Y., MOSIER N., DIEN B., LADISCH M., 2011: Deactivation of cellulases by phenols. Enzymes Microb. Technol., 48, 54-60
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15f7e798-2595-4d35-bcc1-b3e7cd8f0794