PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comparative study of grid-following and grid-forming control schemes in power electronic-based power systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Along with de-carbonisation, the penetration of power electronic converters has increased, and the power system has become a power electronic-based power system. In such a situation, the stability of the power system faces great challenges. In the event of a large disturbance, the power grid will lack the ability to maintain a stable voltage and frequency. In order to improve the stability of the power grid, the traditional grid-following (GFL) control is needed to be converted to the grid-forming (GFM) control. This paper analyses the control schemes of the GFL and GFM converters by investigating their state-space models, and the eigenvalue trajectories of both control schemes are shown to analyse the stability of the systems. Moreover, a case study is exemplified to compare the performance of the two control strategies while responding to frequency disturbances. Finally, a time-domain simulation model of a 15 kW grid-connected converter is built in Matlab/Simulink to benchmark the performance of the GFL and GFM converters under different working conditions. The result reveals that the GFL converter may encounter some instabilities when applied in power electronic-based systems, while the GFM converter is more suitable for the weak power grid.
Wydawca
Rocznik
Strony
1--20
Opis fizyczny
Bibliogr 23 poz., rys.
Twórcy
autor
  • AAU Energy, Aalborg University, Aalborg, Denmark
autor
  • AAU Energy, Aalborg University, Aalborg, Denmark
  • AAU Energy, Aalborg University, Aalborg, Denmark
Bibliografia
  • Adapa, A. K. and John, V. (2018). Virtual resistor based active damping of LC filter in standalone voltage source inverter. In: Proceedings of APEC 2018, USA, 4-8 Mar. 2018, pp. 1834-1840.
  • Chen, M., Zhou, D. and Blaabjerg, F. (2020). Modelling, Implementation, and Assessment of Virtual Synchronous Generator in Power Systems. Journal of Modern Power Systems and Clean Energy, 8(3), pp. 399-411.
  • Dahono, P. A., Bahar, Y. R., Sato, Y. and Kataoka, T. (2001). Damping of transient oscillations on the output LC filter of PWM inverters by using a virtual resistor. In: Proceedings of 4th IEEE International Conference on Power Electronics and Drive Systems, Denpasar, Indonesia, 25 Oct. 2018, pp. 403-407.
  • Dong, D., Wen, B., Boroyevich, D., Mattavelli, P. and Xue, Y. (2015). Analysis of Phase-Locked Loop Low-Frequency Stability in Three Phase Grid-Connected Power Converters Considering Impedance Interactions. IEEE Transactions on Industrial Electronics, 62(1), pp. 310-321.
  • Du, W., Tuffner, F., Schneider, K. P., Lasseter, R. H., Xie, J., Chen, Z. and Bhattarai, B. P. (2020). Modeling of Grid-Forming and Grid-Following Inverters for Dynamic Simulation of Large-Scale Distribution Systems. IEEE Transactions on Power Delivery, 36(4), pp. 2035-2045.
  • Fang, J., Li, H., Tang, Y. and Blaabjerg, F. (2018). Distributed Power System Virtual Inertia Implemented by Grid-Connected Power Converters. IEEE Transactions on Power Electronics, 33(10), pp. 8488-8499.
  • Gao, X., Zhou, D., Anvari-Moghaddam, A. and Blaabjerg, F. (2021). Grid-following and grid forming control in power electronic based power systems: A comparative study. In: Proceedings of IECON 2021 - 47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, 13-16 Oct. 2021, pp. 1-6.
  • Gao, X., Zhou, D., Anvari-Moghaddam, A. and Blaabjerg, F. (2022). Stability analysis of grid-following and grid-forming converters based on state-space model. In: Proceedings of 2022 International Power Electronics Conference (IPEC-Himeji 2022-ECCE Asia), Himeji, 15-19 May 2022, pp. 422-428.
  • IEEE Guide for Planning DC Links Terminating at AC Locations Having Low Short-Circuit Capacities. (1997). IEEE Standard 1204-1997, 1997, pp. 1-216.
  • IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces. (2018). IEEE Standard 1547-2018 (Revision of IEEE Standard 1547-2003), 2018, pp. 1-138.
  • Lasseter, R. H., Chen, Z. and Pattabiraman, D. (2020). Grid-Forming Inverters: A Critical Asset for the Power Grid. IEEE Journal of Emerging and Selected Topics in Power Electronics, 8(2), pp. 925-935.
  • Pattabiraman, D., Lasseter, R. H. and Jahns, T. M. (2018). Comparison of grid following and grid forming control for a high inverter penetration power system. In: Proceedings of 2018 IEEE Power and Energy Society General Meeting PESGM, Portland or USA, 5-10 Aug. 2018, pp. 1-5.
  • Peng, Q., Jiang, Q., Yang, Y., Liu, T., Wang, H. and Blaabjerg, F. (2019). On the Stability of Power Electronics-Dominated Systems: Challenges and Potential Solutions. IEEE Transactions on Industry Applications, 55(6), pp. 7657-7670.
  • Peng, Q., Yang, Y., Liu, T. and Blaabjerg, F. (2020). Coordination of Virtual Inertia Control and Frequency Damping in PV Systems for Optimal Frequency Support. CPSS Transactions on Power Electronics and Applications, 5(4), pp. 305-316.
  • Rocabert, J., Luna, A., Blaabjerg, F. and Rodríguez, P. (2012). Control of Power Converters in AC Microgrids. IEEE Transactions on Power Electronics, 27(11), pp. 4734-4749.
  • Rosso, R., Wang, X., Liserre, M., Lu, X. and Engelken, S. (2021). Grid-Forming Converters: Control Approaches, Grid-Synchronization, and Future Trends - A Review. IEEE Open Journal of Industry Applications, 2, pp. 93-109.
  • Sangwongwanich, A., Abdelhakim, A., Yang, Y. and Zhou, K. (2018). Control of single-phase and three-phase DC/AC converters. In: F. Blaabjerg, ed., Control of Power Electronic Converters and Systems. Academic Press, Amsterdam, The Netherlands, pp. 153-173.
  • Wang, X., Taul, M. G., Wu, H., Liao, Y., Blaabjerg, F. and Harnefors, L. (2020). Grid-Synchronization Stability of Converter-Based Resources – An Overview. IEEE Open Journal of Industry Applications, 1, pp. 115-134.
  • Wen, B., Boroyevich, D., Burgos, R., Mattavelli, P. and Shen, Z. (2016). Analysis of D-Q Small Signal Impedance of Grid-Tied Inverters. IEEE Transactions on Power Electronics, 31(1), pp. 675-687.
  • Wu, G., Sun, H., Zhang, X., Egea-Alvarez, A., Zhao, B., Xu, S., Wang, S. and Zhou, X. (2020). Parameter Design Oriented Analysis of the Current Control Stability of the Weak-Grid-Tied VSC. IEEE Transactions on Power Delivery, 36(3), pp. 1458-1470.
  • Xie, Z., Chen, Y., Wu, W., Xu, Y., Wang, H., Guo, J. and Luo, A. (2019). Modeling and Control Parameters Design for Grid-Connected Inverter System Considering the Effect of PLL and Grid Impedance. IEEE Access, 8, pp. 40474-40484.
  • Yang, L., Chen, Y., Luo, A., Chen, Z., Zhou, L., Zhou, X., Wu, W., Tan, W. and Guerrero, J. M. (2019). Effect of Phase-Locked Loop On Small-Signal Perturbation Modelling and Stability Analysis for Three-Phase LCL-Type Inverter Connected to Weak Grid. IET Renewable Power Generation, 13(7), pp. 86-93.
  • Zhong, Q. and Weiss, G. (2011). Synchronverters: Inverters That Mimic Synchronous Generators. IEEE Transactions on Industrial Electronics, 58(4), pp. 1259-1267.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15f41c32-6929-4b27-b07a-424f6e72fbb0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.