PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A review of fabrication polymer scaffolds for biomedical applications using additive manufacturing techniques

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the current state-of-the art of additive manufacturing (AM) applications in the biomedical field, especially in tissue engineering. Multiple advantages of additive manufacturing allow to precise three-dimensional objects fabrication with complex struc-ture using various materials. Depending on the purpose of the manufactured part, different AM technologies are implemented, in which a specific material can be utilized. In the biomedical field, there are used several techniques such as: Binder Jetting, Material Extru-sion, Material Jetting, Powder Bed Fusion, Sheet Lamination, Vat Polymerization. This article focuses on the utilization of polymer materials (natural and synthetic) taking into account hydrogels in scaffolds fabrication. Assessment of polymer scaffolds mechanical properties enables personalized patient care, as well as prevents damage after implantation in human body. By controlling process parameters it is possible to obtain optimised mechanical properties of manufactured parts.
Twórcy
  • Centre for Advanced Manufacturing Technologies (CAMT/FPC), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
autor
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Smoluchowskiego 25, 50-370 Wroclaw, Poland
  • Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
autor
  • Centre for Advanced Manufacturing Technologies (CAMT/FPC), Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
Bibliografia
  • [1] Pereira TF, Oliveira MF, Maia IA, Silva JVL, Costa MF, Thiré RMSM. 3D printing of poly(3-hydroxybutyrate) porous structures using selective laser sintering. Macromol Symp 2012;319:64–73. http://dx.doi.org/10.1002/masy.201100237.
  • [2] Liu A, Xue GH, Sun M, Shao HF, Ma CY, Gao Q, et al. 3D printing surgical implants at the clinic: a experimental study on anterior cruciate ligament reconstruction. Sci Rep 2016;6. http://dx.doi.org/10.1038/srep21704.
  • [3] Bracaglia LG, Smith BT, Watson E, Arumugasaamy N, Mikos AG, Fisher JP. 3D printing for the design and fabrication of polymer-based gradient scaffolds. Acta Biomater 2017;56:3–13. http://dx.doi.org/10.1016/j.actbio.2017.03.030.
  • [4] Gu BK, Choi DJ, Park SJ, Kim MS, Kang CM, Kim C-H. 3-dimensional bioprinting for tissue engineering applications. Biomater Res 2016;20:12. http://dx.doi.org/10.1186/s40824-016-0058-2.
  • [5] Javaid M, Haleem A. Additive manufacturing applications in medical cases: a literature based review. Alexandria J Med 2018;54:411–22. http://dx.doi.org/10.1016/j.ajme.2017.09.003.
  • [6] Yuan L, Ding S, Wen C. Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: a review. Bioact Mater 2019;4:56–70. http://dx.doi.org/10.1016/j.bioactmat.2018.12.003.
  • [7] Mazzoli A. Selective laser sintering in biomedical engineering. Med Biol Eng Comput 2013;51:245–56. http://dx.doi.org/10.1007/s11517-012-1001-x.
  • [8] Hammad M, Ibrahim M, Hadhoud M. A novel biometric based on ECG signals and images for human authentication. Int Arab J Inf Technol 2016;13:959–64.
  • [9] Hammad M, Maher A, Wang K, Jiang F, Amrani M. Detection of abnormal heart conditions based on characteristics of ECG signals. Measurement 2018;125:634–44. http://dx.doi.org/10.1016/j.measurement.2018.05.033.
  • [10] Dziergowska K, Labowska MB, Gasior-Glogowska M, Kmiecik B, Detyna J. Modern noninvasive methods for monitoring glucose levels in patients: a review. Bio- Algorithms Med-Syst 2019;15:1–22. http://dx.doi.org/10.1515/bams-2019-0052.
  • [11] Detyna J, Jelen L, Jelen M. Role of image processing in the cancer diagnosis. Bio-Algorithms Med-Syst 2011;7:5–9.
  • [12] Chohan JS, Singh R, Boparai KS. Parametric optimization of fused deposition modeling and vapour smoothing processes for surface finishing of biomedical implant replicas. Meas J Int Meas Confed 2016;94:602–13. http://dx.doi.org/10.1016/j.measurement.2016.09.001.
  • [13] Amrani M, Hammad M, Jiang F, Wang K, Amrani A. Very deep feature extraction and fusion for arrhythmias Integrative Medicine Research, 40 (2020) 624-638. doi:10.1016/j.bbe.2020.01.015detection. Neural Comput Appl 2018;30:2047–57. http://dx.doi.org/10.1007/s00521-018-3616-9.
  • [14] Jelen L, Lipinski A, Detyna J, Jelen M. Grading breast cancer malignancy with neural networks. Bio-Algorithms Med- Syst 2011;7:47–53.
  • [15] Zomorodi-Moghadam M, Abdar M, Davarzani Z, Zhou X, et al. Hybrid particle swarm optimization for rule discovery in the diagnosis of coronary artery disease. Expert Syst 2019;1–17. http://dx.doi.org/10.1111/exsy.12485.
  • [16] Abdar M, Zomorodi-Moghadam M, Zhou X, Gururajan R, Tao X, Barua PD, et al. A new nested ensemble technique for automated diagnosis of breast cancer. Pattern Recognit Lett 2018. http://dx.doi.org/10.1016/j.patrec.2018.11.004.
  • [17] Abdar M, Zomorodi-Moghadam M, Das R, Ting I-H. Performance analysis of classification algorithms on early detection of liver disease. Expert Syst Appl 2017;67:239–51. http://dx.doi.org/10.1016/j.eswa.2016.08.065.
  • [18] Abdar M, Zomorodi-Moghadam M. Impact of patients' gender on Parkinson's disease using classification algorithms. J AI Data Min 2018;6:277–85. http://dx.doi.org/10.22044/jadm.2017.4673.1555.
  • [19] Healthcare Additive Manufacturing Market Size, Share & Trends Analysis Report By Technology (Laser Sintering, Stereolithography), By Application (Medical Implants, Prosthetics), By Material, And Segment Forecasts, 2019 - 2026. 2019.
  • [20] Trenfield SJ, Madla CM, Basit AW, Gaisford S. The shape of things to come: emerging applications of 3D printing in healthcare. Emerg Appl 3D Print Healthc 2018;31:1–19. http://dx.doi.org/10.1007/978-3-319-90755-0_1.
  • [21] Rosienkiewicz M, Chlebus E, Detyna J. A hybrid spares demand forecasting method dedicated to mining industry. Appl Math Model 2017;49:87–107. http://dx.doi.org/10.1016/j.apm.2017.04.027.
  • [22] Kmiecik B, Skotny A, Detyna J. Structure and mechanical properties of Soft tissues during selected pathological processes. Gen Med (Los Angel) 2017;5:1. http://dx.doi.org/10.4172/2327-5146.1000285.
  • [23] Kmiecik B, Labowska M, Detyna J. Determination of the difference between two complex polymer models simulating the behaviour of biological structures. Biocybern Biomed Eng 2019;39:503–11. http://dx.doi.org/10.1016/j.bbe.2019.04.001.
  • [24] Zomorodi-Moghadam M, Taherkhani M-A, Navi K. Synthesis and optimization by quantum circuit description language. In: Gavrilova ML, Tan CJK, Thapliyal H, Ranganathan N, editors. Trans Comput Sci XXIV spec Issue revers Comput, 8911. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 74–91. http://dx.doi.org/10.1007/978-3-662-45711-5_5.
  • [25] Liu J, Sun L, Xu W, Wang Q, Yu S, Sun J. Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydr Polym 2019;207:297–316. http://dx.doi.org/10.1016/j.carbpol.2018.11.077.
  • [26] Sasiada M, Fraczek-Szczypta A, Tadeusiewicz R. Efficiency testing of artificial neural networks in predicting the properties of carbon nanomaterials as potential systems for nervous tissue stimulation and regeneration. Bio- Algorithms Med-Syst 2017;13:25–35. http://dx.doi.org/10.1515/bams-2016-0025.
  • [27] Tadeusiewicz R. The application of neural networks in biotechnology and biomaterials | Ryszard Tadeusiewicz — Academia.eDu. Biominereal Biotechnol Biometer Med 2000;9–17.
  • [28] Mierzejewska ZA, Markowicz W. Selective Laser Sintering – binding mechanism and assistance in medical Integrative Medicine Research, 40 (2020) 624-638. doi:10.1016/j.bbe.2020.01.015applications. Adv Mater Sci 2015;15:5–16. http://dx.doi.org/10.1515/adms-2015-0011.
  • [29] Hammad M, Luo G, Wang K. Cancelable biometric authentication system based on ECG. Multimed Tools Appl 2019;78:1857–87. http://dx.doi.org/10.1007/s11042-018-6300-2.
  • [30] Hammad M, Wang K. Parallel score fusion of ECG and fingerprint for human authentication based on convolution neural network. Comput Secur 2019;81:107–22. http://dx.doi.org/10.1016/j.cose.2018.11.003.
  • [31] Szymczyk P, Ziólkowski G, Junka A, Chlebus E. Application of Ti6Al7Nb alloy for the manufacture of biomechanical functional structures (BFS) for custom-made bone implants. Mater (Basel Switzerland) 2018;11. http://dx.doi.org/10.3390/ma11060971.
  • [32] Chen Q, Zhu C, Thouas GA. Progress and challenges in biomaterials used for bone tissue engineering: bbioactive glasses and elastomeric composites. Prog Biomater 2012;1:2. http://dx.doi.org/10.1186/2194-0517-1-2.
  • [33] Landers R, Pfister A, Hübner U, John H, Schmelzeisen R, Mülhaupt R. Fabrication of soft tissue engineering scaffolds by means of rapid prototyping techniques. J Mater Sci 2002;37:3107–16. http://dx.doi.org/10.1023/A:1016189724389.
  • [34] Górski F, Kuczko W, Wichniarek R. Influence of process parameters on dimensional accuracy of parts manufactured using fused deposition modelling technology. Adv Sci Technol – Res J 2013;7:27–35. http://dx.doi.org/10.5604/20804075.1062340.
  • [35] Wu W, Geng P, Li G, Zhao D, Zhang H, Zhao J. Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS. Mater (Basel Switzerland) 2015;8:5834–46. http://dx.doi.org/10.3390/ma8095271.
  • [36] Mohamed OA, Masood SH, Bhowmik JL. Characterization and dynamic mechanical analysis of PC-ABS material processed by fused deposition modelling: an investigation through I-optimal response surface methodology. Meas J Int Meas Confed 2017;107:128–41. http://dx.doi.org/10.1016/j.measurement.2017.05.019.
  • [37] Tappa K, Jammalamadaka U. Novel biomaterials used in medical 3D printing techniques. J Funct Biomater 2018;9. http://dx.doi.org/10.3390/jfb9010017.
  • [38] Tan DK, Maniruzzaman M, Nokhodchi A. Advanced pharmaceutical applications of hot-melt extrusion coupled with fused deposition modelling (FDM) 3D printing for personalised drug delivery. Pharmaceutics 2018;10. http://dx.doi.org/10.3390/pharmaceutics10040203.
  • [39] Mohseni M, Hutmacher DW, Castro NJ. Independent evaluation of medical-grade bioresorbable filaments for fused deposition modelling/fused filament fabrication of tissue engineered constructs. Polymers (Basel) 2018;10. http://dx.doi.org/10.3390/polym10010040.
  • [40] Algahtani MS, Mohammed AA, Ahmad J. Extrusion-based 3D printing for pharmaceuticals: contemporary research and applications. Curr Pharm Des 2018;24:4991–5008. http://dx.doi.org/10.2174/1381612825666190110155931.
  • [41] Öblom H, Sjöholm E, Rautamo M, Sandler N. Towards printed pediatric medicines in hospital pharmacies: comparison of 2D and 3D-Printed orodispersible warfarin films with conventional oral powders in unit dose sachets. Pharmaceutics 2019;11:334. http://dx.doi.org/10.3390/pharmaceutics11070334.
  • [42] Lamichhane S, Bashyal S, Keum T, Noh G, Seo JE, Bastola R, et al. Complex formulations, simple techniques: Can 3D printing technology be the Midas touch in pharmaceutical Integrative Medicine Research, 40 (2020) 624-638. doi:10.1016/j.bbe.2020.01.015industry? Asian J Pharm Sci 2019;14(5):465–79. http://dx.doi.org/10.1016/j.ajps.2018.11.008.
  • [43] Shuai C, Yang B, Peng S, Li Z. Development of composite porous scaffolds based on poly(lactide-co-glycolide)/nano- hydroxyapatite via selective laser sintering. Int J Adv Manuf Technol 2013;69:51–7. http://dx.doi.org/10.1007/s00170-013-5001-2.
  • [44] Zhang J., Vo A.Q., Feng X., Bandari S., Repka M.A. Pharmaceutical Additive Manufacturing: a Novel Tool for Complex and Personalized Drug Delivery Systems 2018;19:3388-402. https://doi.org/10.1208/s12249-018-1097-x.
  • [45] Grumezescu AM. Nanobiomaterials in Soft tissue engineering: applications of nanobiomaterials. Elsevier; 2016. http://dx.doi.org/10.1016/C2015-0-00381-1.
  • [46] Kim SH, Yeon YK, Lee JM, Chao JR, Lee YJ, Seo YB, et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun 2018;9. http://dx.doi.org/10.1038/s41467-018-03759-y.
  • [47] Hong D, Chou DT, Velikokhatnyi OI, Roy A, Lee B, Swink I, et al. Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Acta Biomater 2016;45:375–86. http://dx.doi.org/10.1016/j.actbio.2016.08.032.
  • [48] Tai BL, Kao YT, Payne N, Zheng Y, Chen L, Shih AJ. 3D Printed composite for simulating thermal and mechanical responses of the cortical bone in orthopaedic surgery. Med Eng Phys 2018;61:61–8. http://dx.doi.org/10.1016/j.medengphy.2018.08.004.
  • [49] Kondo K, Harada N, Masuda H, Sugo N, Terazono S, Okonogi S, et al. A neurosurgical simulation of skull base tumors using a 3D printed rapid prototyping model containing mesh structures. Acta Neurochir (Wien) 2016;158:1213–9. http://dx.doi.org/10.1007/s00701-016-2781-9.
  • [50] Singh JP, Pandey PM, Verma AK. Fabrication of three dimensional open porous regular structure of PA-2200 for enhanced strength of scaffold using selective laser sintering. Rapid Prototyp J 2016;22:752–65. http://dx.doi.org/10.1108/RPJ-11-2014-0148.
  • [51] Dumitrescu IB, Lupuliasa D, Dragoi CM, Nicolae AC, Pop A, Șaramet G, et al. The age of pharmaceutical 3D printing. Technological and therapeutical implications of additive manufacturing. Farmacia 2018;66:365–89. http://dx.doi.org/10.31925/farmacia.2018.3.1.
  • [52] Amza C, Zapciu A, Popescu D. Paste extruder—hardware add-on for desktop 3D printers. Technologies 2017;5:50. http://dx.doi.org/10.3390/technologies5030050.
  • [53] Deckers JP, Vermandel M, Geldhof J, Vasiliauskaite E, Forward M, Plasschaert F. Development and clinical evaluation of laser-sintered ankle foot orthoses. Plast Rubber Compos 2018;47:42–6. http://dx.doi.org/10.1080/14658011.2017.1413760.
  • [54] XiaoHui S, Wei L, PingHui S, QingYong S, QingSong W, YuSheng S, et al. Selective laser sintering of aliphatic-polycarbonate/hydroxyapatite composite scaffolds for medical applications. Int J Adv Manuf Technol 2015;81: 15–25. http://dx.doi.org/10.1007/s00170-015-7135-x.
  • [55] Duan B, Wang M. Selective laser sintering and its application in biomedical engineering. MRS Bull 2011;36:998–1005. http://dx.doi.org/10.1557/mrs.2011.270.
  • [56] Kumaresan T, Gandhinathan R, Ramu M, Ananthasubramanian M, Pradheepa KB. Design, analysis and fabrication of polyamide/ hydroxyapatite porous structured scaffold using selective laser sintering method Integrative Medicine Research, 40 (2020) 624-638. doi:10.1016/j.bbe.2020.01.015for bio-medical applications. J Mech Sci Technol 2016;30:5305–12. http://dx.doi.org/10.1007/s12206-016-1049-x.
  • [57] Ramu M, Ananthasubramanian M, Kumaresan T, Gandhinathan R, Jothi S. Optimization of the configuration of porous bone scaffolds made of Polyamide/ Hydroxyapatite composites using Selective Laser Sintering for tissue engineering applications. Biomed Mater Eng 2018;29:739–55. http://dx.doi.org/10.3233/BME-181020.
  • [58] Huotilainen E, Salmi M, Lindahl J. Three-dimensional printed surgical templates for fresh cadaveric osteochondral allograft surgery with dimension verification by multivariate computed tomography analysis. Knee 2019;26(4):923–32. http://dx.doi.org/10.1016/j.knee.2019.05.007.
  • [59] Salmi M. Possibilities of preoperative medical models made by 3D printing or additive manufacturing. J Med Eng 2016;2016:1–6. http://dx.doi.org/10.1155/2016/6191526.
  • [60] Smith ML, McGuinness J, O'Reilly MK, Nolke L, Murray JG, Jones JFX. The role of 3D printing in preoperative planning for heart transplantation in complex congenital heart disease. Ir J Med Sci 2017;186:753–6. http://dx.doi.org/10.1007/s11845-017-1564-5.
  • [61] Jose PA, GV PC. 3D printing of pharmaceuticals — potential technology in developing personalized medicine. Asian J Pharm Res Dev 2018;6:46–54. http://dx.doi.org/10.22270/ajprd.v6i3.375.
  • [62] Wang J, Lin YF. Mesenchymal stem cells and craniofacial regeneration. Bentham Science Publishers; 2016.
  • [63] Gupta V, Paull B, Nesterenko PN. 3D printing in chemical sciences: applications across chemistry. Royal Society of Chemistry; 2019.
  • [64] Ahmad N, Gopinath P, Dutta R. 3D printing technology in nanomedicine. Elsevier; 2019. http://dx.doi.org/10.1016/B978-0-12-815890-6.01001-X.
  • [65] Eggbeer D, Bibb R, Paterson A. Medical modelling: the application of advanced design and rapid prototyping techniques in medicine. Second edition. 2015.
  • [66] Kun K. Reconstruction and development of a 3D printer using FDM technology. Procedia Eng 2016;149:203–11. http://dx.doi.org/10.1016/j.proeng.2016.06.657.
  • [67] Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res 2019;23:4. http://dx.doi.org/10.1186/s40824-018-0149-3.
  • [68] Jamróz W, Szafraniec J, Kurek M, Jachowicz R. 3D printing in pharmaceutical and medical applications – recent achievements and challenges. Pharm Res 2018;35. http://dx.doi.org/10.1007/s11095-018-2454-x.
  • [69] Zhang HR, Yin LF, Liu YL, Yan LY, Wang N, Liu G, et al. Fabrication and accuracy research on 3D printing dental model based on cone beam computed tomography digital modeling. Hua Xi Kou Qiang Yi Xue Za Zhi 2018;36:156–61. http://dx.doi.org/10.7518/hxkq.2018.02.008.
  • [70] Schmid M. Laser sintering with plastics: technology, processes, and materials. München: Carl Hanser Verlag GmbH & Co. KG; 2018. http://dx.doi.org/10.3139/9781569906842.
  • [71] Szymczyk P, Junka A, Ziólkowski G, Smutnicka D, Bartoszewicz M, Chlebus E. The ability of S. aureus to form biofilm on the TI-6Al-7Nb scaffolds produced by Selective Laser Melting and subjected to the different types of surface modifications. Acta Bioeng Biomech 2013;15:69–76. http://dx.doi.org/10.5277/abb130109.
  • [72] Safari A, Allahverdi M. Electroceramics: Rapid prototyping. Encycl. Mater. Sci. Technol.. Elsevier; 2001. p. 2510–8. http://dx.doi.org/10.1016/B0-08-043152-6/00454-X .Integrative Medicine Research, 40 (2020) 624-638. doi:10.1016/j.bbe.2020.01.015.
  • 73] Provaggi E, Kalaskar DM. 3D printing families: laser, powder, nozzle based techniques. 3D Print Med 2017; 21–42. http://dx.doi.org/10.1016/B978-0-08-100717-4.00003-X.
  • [74] Elomaa L, Pan CC, Shanjani Y, Malkovskiy A, Seppälä JV, Yang Y. Three-dimensional fabrication of cell-laden biodegradable poly(ethylene glycol-co-depsipeptide) hydrogels by visible light stereolithography. J Mater Chem B 2015;3:8348–58. http://dx.doi.org/10.1039/c5tb01468a.
  • [75] Neiman JAS, Raman R, Chan V, Rhoads MG, Raredon MSB, Velazquez JJ, et al. Photopatterning of hydrogel scaffolds coupled to filter materials using stereolithography for perfused 3D culture of hepatocytes. Biotechnol Bioeng 2015;112:777–87. http://dx.doi.org/10.1002/bit.25494.
  • [76] Chan V, Zorlutuna P, Jeong JH, Kong H, Bashir R. Three-dimensional photopatterning of hydrogels using stereolithography for long-term cell encapsulation. Lab Chip 2010;10:2062–70. http://dx.doi.org/10.1039/c004285d.
  • [77] Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A. Additive manufacturing of biomaterials. Prog Mater Sci 2018;93:45– 111. http://dx.doi.org/10.1016/j.pmatsci.2017.08.003.
  • [78] Chaikof EL, Matthew H, Kohn J, Mikos AG, Prestwich GD, Yip CM. Biomaterials and scaffolds in reparative medicine. Ann N Y Acad Sci, 961. New York Academy of Sciences; 2002. p. 96–105. http://dx.doi.org/10.1111/j.1749-6632.2002.tb03057.x.
  • [79] Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005;26:5474–91. http://dx.doi.org/10.1016/j.biomaterials.2005.02.002.
  • [80] Turnbull G, Clarke J, Picard F, Riches P, Jia L, Han F, et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioact Mater 2018;3:278–314. http://dx.doi.org/10.1016/j.bioactmat.2017.10.001.
  • [81] Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 2002;23:1169–85. http://dx.doi.org/10.1016/S0142-9612(01)00232-0.
  • [82] Shumilova AA, Myltygashev MP, Kirichenko AK, Nikolaeva ED, Volova TG, Shishatskaya EI. Porous 3D implants of degradable poly-3-hydroxybutyrate used to enhance regeneration of rat cranial defect. J Biomed Mater Res - Part A 2017;105:566–77. http://dx.doi.org/10.1002/jbm.a.35933.
  • [83] Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000;21:2529–43. http://dx.doi.org/10.1016/s0142-9612(00)00121-6.
  • [84] Bružauskaite I, Bironaite D, Bagdonas E, Bernotiene E. Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology 2016;68:355–69. http://dx.doi.org/10.1007/s10616-015-9895-4.
  • [85] Rodrigues N, Benning M, Ferreira AM, Dixon L, Dalgarno K. Manufacture and characterisation of porous PLA scaffolds. Procedia CIRP, 49. Elsevier B.V.; 2016. p. 33–8. http://dx.doi.org/10.1016/j.procir.2015.07.025.
  • [86] Tadeusiewicz R. Artificial intelligence as a tool to support the development and testing of biomaterials. Eng Biomater 2001;15–16:3–22.
  • [87] Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioact Mater 2018;3:144–56. http://dx.doi.org/10.1016/j.bioactmat.2017.11.008.
  • [88] Ng WL, Yeong WY, Naing MW. Polyelectrolyte gelatinchitosan hydrogel optimized for 3D bioprinting in skin Integrative Medicine Research, 40 (2020) 624-638. doi:10.1016/j.bbe.2020.01.015tissue engineering. Int J Bioprinting 2016;2:53–62. http://dx.doi.org/10.18063/IJB.2016.01.009.
  • [89] Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci 2012;37:106–26. http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003.
  • [90] Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev 2012;64:18–23. http://dx.doi.org/10.1016/J.ADDR.2012.09.010.
  • [91] Di Giuseppe M, Law N, Webb B, Macrae RA, Liew LJ, Sercombe TB, et al. Mechanical behaviour of alginate- gelatin hydrogels for 3D bioprinting. J Mech Behav Biomed Mater 2018;79:150–7. http://dx.doi.org/10.1016/j.jmbbm.2017.12.018.
  • [92] Ahmed EM. Hydrogel: preparation, characterization, and applications: a review. J Adv Res 2015;6:105–21. http://dx.doi.org/10.1016/j.jare.2013.07.006.
  • [93] Vedadghavami A, Minooei F, Mohammadi MH, Khetani S, Rezaei Kolahchi A, Mashayekhan S, et al. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater 2017;62:42–63. http://dx.doi.org/10.1016/j.actbio.2017.07.028.
  • [94] Gulrez KH, Saphwan AA, Glyn OP. Hydrogels: methods of preparation, characterisation and applications. Prog. Mol. Environ. Bioeng. - Anal. Model. Technol. Appl. InTech; 2011. http://dx.doi.org/10.5772/24553.
  • [95] Akhtar MF, Hanif M, Ranjha NM. Methods of synthesis of hydrogels: A review. Saudi Pharm J 2016;24:554–9. http://dx.doi.org/10.1016/j.jsps.2015.03.022.
  • [96] Shahriari D, Koffler J, Lynam DA, Tuszynski MH, Sakamoto JS. Characterizing the degradation of alginate hydrogel for use in multilumen scaffolds for spinal cord repair. J Biomed Mater Res Part A 2016;104:611–9. http://dx.doi.org/10.1002/jbm.a.35600.
  • [97] George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release 2006;114:1–14. http://dx.doi.org/10.1016/j.jconrel.2006.04.017.
  • [98] Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials. Macromol Biosci 2006;6:623–33. http://dx.doi.org/10.1002/mabi.200600069.
  • [99] Ter Horst B, Chouhan G, Moiemen NS, Grover LM. Advances in keratinocyte delivery in burn wound care. Adv Drug Deliv Rev 2018;123:18–32. http://dx.doi.org/10.1016/j.addr.2017.06.012.
  • [100] Lin H-R, Yeh Y-J. Porous alginate/hydroxyapatite composite scaffolds for bone tissue engineering: preparation, characterization, andin vitro studies. J Biomed Mater Res 2004;71B:52–65. http://dx.doi.org/10.1002/jbm.b.30065.
  • [101] Saarai A, Kasparkova V, Sedlacek T, Saha P. On the development and characterisation of crosslinked sodium alginate/gelatine hydrogels. J Mech Behav Biomed Mater 2013;18:152–66. http://dx.doi.org/10.1016/j.jmbbm.2012.11.010.
  • [102] Jia J, Richards DJ, Pollard S, Tan Y, Rodriguez J, Visconti RP, et al. Engineering alginate as bioink for bioprinting. Acta Biomater 2014;10:4323–31. http://dx.doi.org/10.1016/j.actbio.2014.06.034.
  • [103] Wu Y, Lin ZYW, Wenger AC, Tam KC, Tang XS. 3D bioprinting of liver-mimetic construct with alginate/ cellulose nanocrystal hybrid bioink. Bioprinting 2018;9:1–6. http://dx.doi.org/10.1016/j.bprint.2017.12.001.
  • [104] Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev 2018;132:296–332. http://dx.doi.org/10.1016/j.addr.2018.07.004 Integrative Medicine Research, 40 (2020) 624-638. doi:10.1016/j.bbe.2020.01.015.
  • [105] Webb B, Doyle BJ. Parameter optimization for 3D bioprinting of hydrogels. Bioprinting 2017;8:8–12. http://dx.doi.org/10.1016/j.bprint.2017.09.001.
  • [106] Yeo M, Lee J-S, Chun W, Kim GH. An innovative collagen- based cell-printing method for obtaining human adipose stem cell-laden structures consisting of core-sheath structures for tissue engineering. Biomacromolecules 2016;17:1365–75. http://dx.doi.org/10.1021/acs.biomac.5b01764.
  • [107] Ciszkiewicz A, Milewski G. A novel kinematic model for a functional spinal unit and a lumbar spine. Acta Bioeng Biomech 2016;18:87–95. http://dx.doi.org/10.5277/ABB-00324-2015-03.
  • [108] Ciszkiewicz A, Milewski G. Structural and material optimization for automatic synthesis of spine-segment mechanisms for humanoid robots with custom stiffness profiles. Materials (Basel) 2019;12. http://dx.doi.org/10.3390/ma12121982.
  • [109] Serin G, Kahya M, Unver HO, Durlu N, Eroğul O, Gulec Y. A review of additive manufacturing technologies. 17th Int. Conf. Mach. Des. Prod.; 2018.
  • [110] Song Y, Li Y, Song W, Yee K, Lee KY, Tagarielli VL. Measurements of the mechanical response of Integrative Medicine Research, 40 (2020) 624-638. doi:10.1016/j.bbe.2020.01.015unidirectional 3D-printed PLA. Mater Des 2017;123:154–64. http://dx.doi.org/10.1016/j.matdes.2017.03.051.
  • [111] Bagsik A, Schöppner V, Paderborn K. Mechanical properties of fused deposition modeling parts manufactured with ULTEM*9085. Annu Tech Conf - ANTEC 2011;1294–8.
  • [112] Fina F, Gaisford S, Basit AW. Powder bed fusion: the working process, current applications and opportunities. 3D Print Pharm 2018;31:81–105. http://dx.doi.org/10.1007/978-3-319-90755-0_5.
  • [113] Naghieh S, Badrossamay M, Foroozmehr E, Kharaziha M. Combination of PLA micro-fibers and PCL-gelatin nano-fibers for development of bone tissue engineering scaffolds. Int J Swarm Intell Evol Comput 2017;6:1–4. http://dx.doi.org/10.4172/2090-4908.1000150.
  • [114] Kromka-Szydek M, Jedrusik-Pawlowska M, Milewski G, Lekston Z, Cieslik T, Drugacz J. Numerical analysis of displacements of mandible bone parts using various elements for fixation of subcondylar fractures. Acta Bioeng Biomech 2010;12:11–8.
  • [115] van Wijk A, van Wijk I. 3D printing with biomaterials: towards a sustainable and circular economy. IOS Press; 2015. http://dx.doi.org/10.3233/978-1-61499-486-2-i.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15f2d1ba-a21b-4bb3-977e-9003f5231b0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.