Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The presence of more than one solute diffused in fluid mixtures is very often requested for discussing the natural phenomena such as transportation of contaminants, underground water, acid rain and so on. In the paper, the effect of nonlinear thermal radiation on triple diffusive convective boundary layer flow of Casson nanofluid along a horizontal plate is theoretically investigated. Similarity transformations are utilized to reduce the governing partial differential equations into a set of nonlinear ordinary differential equations. The reduced equations are numerically solved using Runge-Kutta-Fehlberg fourth-fifth order method along with shooting technique. The impact of several existing physical parameters on velocity, temperature, solutal and nanofluid concentration profiles are analyzed through graphs and tables in detail. It is found that, modified Dufour parameter and Dufour solutal Lewis number enhances the temperature and solutal concentration profiles respectively.
Czasopismo
Rocznik
Tom
Strony
49--69
Opis fizyczny
Bibliogr. 31 poz., wykr., wz.
Twórcy
autor
- Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta-577451, Shimoga, Karnataka, India
- Department of Studies and Research in Mathematics, Kuvempu University, Shankaraghatta-577451, Shimoga, Karnataka, India
- Government First Grade College, Koppa, Chikkamagaluru-577126, Karnataka, India
Bibliografia
- [1] Griffiths R.W.: The influence of a third diffusing component upon the onset of convection. J. Fluid Mech. 92(1979), 4, 659–670.
- [2] Kuznetsov A.V., Nield D.A.: Double-diffusive natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 50(2011), 5, 712–717.
- [3] Rionero S.: Triple diffusive convection in porous media. Acta Mech. 224(2013), 2, 447–458.
- [4] Shivakumara I.S., Naveen Kumar S.B.: Linear and weakly nonlinear triple diffusive convection in a couple stress fluid layer. Int. J. Heat Mass Tran. 68(2014), 542–553.
- [5] Khan W.A., Culham J.R., Khan Z.H., Pop I.: Triple diffusion along a horizontal plate in a porous medium with convective boundary condition. Int. J. Therm. Sci. 86(2014), 60–67.
- [6] Ghalambaz M., Moattar F., Karbassi A., Sheremet M.A., Pop I.: Triplediffusive mixed convection in a porous open cavity. Transp. Porous Med. 116(2017), 2, 473–491.
- [7] Choi S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. In: Proc. ASME Int. Mechanical Engineering Congress and Exposition 66(1995), 99–105.
- [8] Gorla R.S.R., Chamkha A.: Natural convective boundary layer flow over a horizontal plate embedded in a porous medium saturated with a nanofluid. J. Modern Physics 2(2011), 2, 62–71.
- [9] Shehzad S.A., Abbasi F.M., Hayat T., Alsaedi F.: MHD mixed convective peristaltic motion of nanofluid with Joule heating and Thermophoresis effects. PLOS One 9(2014), 11, e111417 1-16.
- [10] Sheikholeslami M., Rashidi M.M., Hayat T., Ganji D.D.: Free convection of magnetic nanofluid considering MFD viscosity effect. J. Mol. Liq. 218(2016), 393–399.
- [11] Hayat T., Khan M.I., Waqas M., Alsaedi A., Khan M.I.: Radiative flow of micropolar nanofluid accounting thermophoresis and Brownian moment. Int. J. Hydrogen Energ. 42(2017), 26, 16821–16833.
- [12] Archana M., Gireesha B.J., Rashidi M.M., Prasannakumara B.C., Gorla R.S.R: Bidirectionally stretched flow of Jeffrey liquid with nanoparticles, Rosseland radiation and variable thermal conductivity. Arch. Thermodyn. 39(2018), 4, 33–57.
- [13] Rana G.C., Chand R., Sharma V., Sharda A.: On the onset of triple-diffusive convection in a layer of nanofluid. JCAMECH 47(2016), 1, 67–77.
- [14] Goyal R., Bhargava R.: FEM simulation of triple diffusive magnetohydrodynamics effect of nanofluid flow over a nonlinear stretching sheet. Int. J. Mathematical, Computational, Phys. Elec. Comput. Eng. 10(2016), 9, 416–423.
- [15] Khan Z.H., Khan W.A., Pop I.: Triple diffusive free convection along a horizontal plate in porous media saturated by a nanofluid with convective boundary condition. Int. J. Heat Mass Tran. 66(2013), 603–612.
- [16] Khan Z.H., Culham J.R., Khan W.A., Pop I.: Triple convective-diffusion boundary layer along a vertical flat plate ina porous medium saturated by a water-based nanofluid. Int. J. Therm. Sci. 90 (2015), 53–61.
- [17] Casson N.: A flow equation for pigment oil suspensions of the printing ink type. In: Rheology of Sisperse Systems (C.C. Mill Ed.) Pergamon Press, Oxford 1959, 84–102.
- [18] Hayat T., Shehzad S.A., Alsaedi A.: Soret and Dufour effects on magnetohydrodynamic (MHD) flow of Casson fluid. Appl. Math. Mech. -Engl. Ed. 33(2012), 10, 1301–1312.
- [19] Mabood F., Abdel-Rahman R.G., Lorenzini G.: Effect of melting heat transfer and thermal radiation on Casson fluid flow in porous medium over moving surface with magnetohydrodynamics. J. Eng. Thermophys. 25(2016), 4, 1–12.
- [20] Ramesh G.K., Prasannakumara B.C. ,Gireesha B.J., M.M.Rashidi: Casson fluid flow near the stagnation point over a stretching sheet with variable thickness and radiation. J. Appl. Fluid Mech. 9(2016), 3, 1115–1122.
- [21] Ibrahim W., Makinde O.D.: Magnetohydrodynamic stagnation point flow and heat transfer of Casson nanofluid past a stretching sheet with slip and convective boundary condition. J. Aerospace Eng. 29 (2016), 2, 04015037 1–11.
- [22] Waqas M., Farooq M., Khan M.I., Alsaedi A., Hayat T., Yasmeen T.: Magnetohydrodynamic (MHD) mixed convection flow of micropolar liquid due to nonlinear stretched sheet with convective condition. Int. J. Heat . Mass Tran. 102(2016), 766–772.
- [23] Hayat T., Khan M.I., Farooq M., Yasmeen T., Alsaedi A.: Stagnation point flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions. J. Mol. Liq. 220(2016), 49–55.
- [24] Khan M.I., Waqas M., Hayat T., Alsaedi A.: A comparative study of Casson fluid with homogeneous-heterogeneous reactions. J. Colloid Interf. Sci. 498(2017), 85–90.
- [25] Makinde O.D., Animasaun I.L.: Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution. J. Mol. Liq. 221(2016), 733–743.
- [26] Mustafa M., Mushtaq A., Hayat T., Alsaedi A.: Rotating flow of magnetitewater nanofluid over a stretching surface inspired by non-linear thermal radiation. PLOS ONE, 11 (2016), 2, 0149304 1–16.
- [27] Archana M., Gireesha B.J., Venkatesh P., Reddy M.G.: Influence of nonlinear thermal radiation and magnetic field on three-dimensional flow of a Maxwell nanofluid. J. Nanofluids 6(2017), 2, 232–242.
- [28] Ramesh G.K., Prasannakumara B.C., Gireesha B.J., Shehzad S.A., Abbasi F.M.: Three dimensional flow of Maxwell fluid with suspended nanoparticles past a bidirectional porous stretching surface with thermal radiation. Therm. Sci. Eng. Prog. 1(2017), 6–14.
- [29] Hussain S.T., Ul Haq R., Noor N.F.M., Nadeem S.: Non-linear radiation effects in mixed convection stagnation point flow along a vertically stretching surface. Int. J. Chem. Reactor Eng. 15(2017), 1 doi.org/10.1515/ijcre-2015-0177.
- [30] Farooq M., Khan M.I., Waqas M.,Hayat T., Alsaedi A., Khan M.I.: MHD stagnation point flow of viscoelastic nanofluid with non-linear radiation effects. J. Mol. Liq. 221(2016), 1097–1103.
- [31] Khan M.I., Alsaedi A., Shehzad S.A., Hayat T.: Hydromagnetic nonlinear thermally radiative nanoliquid flow with Newtonian heat and mass conditions. Results Phys. 7(2017), 2255–2260.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15f078e2-e349-4d9e-a003-a624d408409e