PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pyrolysis of waste tyres – The effect of reaction kinetics on the results of thermogravimetric analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a systematic thermogravimetric (TG) study on the kinetics of end-of-life tyre (ELT) pyrolysis. In the experimental part of this work, TG results are compared for tyre samples of different mass and size. This shows that the conduction resistance in the milligram scale (up to ~100 mg) tyre sample can be neglected. A comparison of experimental results demonstrates that the characteristic maxima on the DTG curve (the first derivative of TG signal) shift towards higher temperatures for higher heating rates. This phenomenon is explained to have kinetic origin and it is not caused by the internal heat transfer resistance. In the modelling part of this work, the kinetic parameters of the Three-Component Simulation Model (TCSM) are calculated and compared to the literature values. Testing of the kinetic model is carried out using experiments with a varying heating rate. This shows the limitation of the simplified kinetic approach and the appropriate selection method of the kinetic parameters.
Słowa kluczowe
Rocznik
Strony
363--377
Opis fizyczny
Bibliogr. 18 poz., tab., wykr.
Twórcy
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, Warsaw, Poland
autor
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Waryńskiego 1, Warsaw, Poland
  • CONTEC Ltd., ul. Książęca 17/1B, Warsaw, Poland
Bibliografia
  • 1. Al-Salem S.M., Lettieri P., Baeyens J., 2009. Kinetics and product distribution of end of life tires (ELTs) pyrolysis: a novel approach in polyisoprene and SBR thermal cracking. J. Hazard. Mater., 172, 1690–1694. DOI: 10.1016/j.jhazmat.2009.07.127.
  • 2. Chen J.H., Chen K.S., Tong L.Y., 2001. On the pyrolysis kinetics of scrap automotive tires. J. Hazard. Mater., 84, 43-55. DOI: 10.1016/S0304-3894(01)00180-7.
  • 3. Council Directive 1999/31/EC of 26 April 1999 on the Landfill of Waste. 1999. Office for Official Publications of the European Communities Luxembourg.
  • 4. Council Directive 91/156/EEC of 18 March 1991 Amending Directive 75/442/EEC on Waste. 1991. Council of European Communities. European Commission: Brussels.
  • 5. ETRMA's End-of-life Tyres Management report, 2015. Available at: http://www.etrma.org/tyres/ELTs.
  • 6. Galvagno S., Casu S., Martino M., Di Palma E., Portofino S., 2007. Thermal and kinetic study of tyre waste pyrolysis via TG-FTIR-MS analysis. J. Therm. Anal. Calorim., 88, 507-514. DOI: 10.1007/s10973-006-8409-1.
  • 7. González J.F., Encinar J.M., Canito J.L., Rodríguez J.J., 2001. Pyrolysis of automobile tyre waste. Influence of operating variables and kinetics study. J. Anal. Appl. Pyrolysis, 58, 667-683. DOI: 10.1016/S0165- 2370(00)00201-1.
  • 8. Islam M.R., Haniu H., Fardoushi J., 2009. Pyrolysis kinetics behavior of solid tire wastes available in Bangladesh. Waste Manage., 29, 668-677. DOI: 10.1016/j.wasman.2008.04.009.
  • 9. Kim S., Park J., Chun H., 1995. Pyrolysis kinetics of scrap tire rubbers. I: Using DTG and TGA. J. Environ. Eng., 121, 507-514. DOI: 10.1061/(ASCE)0733-9372(1995)121:7(507).
  • 10. Lah B., Klinar D., Likozar B., 2013. Pyrolysis of natural, butadiene, styrene-butadiene rubber and tyre components: Modelling kinetics and transport phenomena at different heating rates and formulations. Chem. Eng. Sci., 87, 1-13. DOI: 10.1016/j.ces.2012.10.003.
  • 11. Leung D.Y.C., Wang C.L., 1999. Kinetic modeling of scrap tire pyrolysis. Energy Fuels, 13, 421-427. DOI: 10.1021/ef980124l.
  • 12. Mui E.L.K., Cheung W.H., Lee V.K. C., McKay G., 2010. Compensation effect during the pyrolysis of tyres and bamboo. Waste Manage., 30, 821-830. DOI: 10.1016/j.wasman.2010.01.014.
  • 13. Mui E.L.K., Lee V.K.C., Cheung W.H., McKay G., 2008. Kinetic modeling of waste tire carbonization. Energy Fuels, 22, 1650-1657. DOI: 10.1021/ef700601g.
  • 14. Quek A., Balasubramanian R., 2009. An algorithm for the kinetics of tire pyrolysis under different heating rates. J. Hazard. Mater., 166, 126-132. DOI: 10.1016/j.jhazmat.2008.11.034.
  • 15. Quek A., Balasubramanian R., 2012. Mathematical modeling of rubber tire pyrolysis. J. Anal. Appl. Pyrolysis, 95, 1-13. DOI: 10.1016/j.jaap.2012.01.012.
  • 16. Rudniak L., Machniewski P., 2017. Modelling and experimental investigation of waste tyre pyrolysis process in a laboratory reactor. Chem. Process Eng., 38, 445-454. DOI: 10.1515/cpe-2017-0034.
  • 17. Seidelt S., Müller-Hagedorn M., Bockhorn H., 2006. Description of tire pyrolysis by thermal degradation behaviour of main components. J. Anal. Appl. Pyrolysis, 75(1), 11-18. DOI: 10.1016/j.jaap.2005.03.002.
  • 18. Williams P.T., 2013. Pyrolysis of waste tyres: A review. Waste Manage., 33, 1714-1728. DOI: 10.1016/j.wasman.2013.05.003.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15ee461f-85e8-4f2e-b40b-bda9ab1fa147
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.