PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Polypropylene Crystallisation in the Presence of Inorganic Additives

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Krystalizacja polipropylenu w obecności dodatków nieorganicznych
Języki publikacji
EN
Abstrakty
EN
The physical modification of polypropylene (PP) fibres with inorganic additives ensures more intense anchoring of PP fibres in constructional composites, which leads to great improvement of the function of PP fibres in relation to the transmission and absorption of deformation energy in the formation and loading of composites. This work focuses on the preparation of PP fibres modified with untreated and treated CaCO3 and SiO2 for constructional composites. It investigated the effect of inorganic additives on the thermal, thermo-mechanical and sorption properties of these fibres. Melting and crystallisation temperatures as well as the melting and crystallisation enthalpies of PP and modified PP fibres depend on the additives and conditions of preparation of PP fibres applied. A lower amount of inorganic additives improves and a higher amount of inorganic additives worsened the dimensional stability of the PP fibres observed. The addition of inorganic fillers increased the water vapour sorption of the modified PP fibres in comparison with the pure PP fibre.
PL
Fizyczna modyfikacja włókien polipropylenowych (PP) za pomocą nieorganicznych dodatków zapewnia bardziej intensywne umocowanie włókien PP w kompozytach konstrukcyjnych, co powoduje znaczną poprawę funkcji włókien PP w stosunku do przenoszenia i absorpcji energii odkształcenia i obciążenia kompozytów. Przeprowadzone prace koncentrowały się na przygotowaniu włókien PP modyfikowanych nieoczyszczonymi i poddanymi obróbce CaCO3 i SiO2 do zastosowania w kompozytach konstrukcyjnych. Zbadano wpływ nieorganicznych dodatków na właściwości termiczne, termo-mechaniczne i sorpcyjne włókien. Stwierdzono, ze temperatury topnienia i krystalizacji oraz entalpie topnienia i krystalizacji PP i modyfikowanych włókien PP są zależne od dodatków i warunków wytwarzania włókien PP. Mniejsza ilość nieorganicznych dodatków poprawia, a większa ilość pogarsza stabilność wymiarową obserwowanych włókien PP. Dodatek nieorganicznych wypełniaczy zwiększył sorpcję pary wodnej modyfikowanych włókien PP w porównaniu z czystymi włóknami PP.
Rocznik
Strony
30--38
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Natural and Synthetic Polymers, Department of Plastics, Rubber and Fibres, Radlinského 9, 812 37 Bratislava, Slovak Republic
  • Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Natural and Synthetic Polymers, Department of Plastics, Rubber and Fibres, Radlinského 9, 812 37 Bratislava, Slovak Republic
  • Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Natural and Synthetic Polymers, Department of Plastics, Rubber and Fibres, Radlinského 9, 812 37 Bratislava, Slovak Republic
autor
  • Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Natural and Synthetic Polymers, Department of Plastics, Rubber and Fibres, Radlinského 9, 812 37 Bratislava, Slovak Republic
  • Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Natural and Synthetic Polymers, Department of Plastics, Rubber and Fibres, Radlinského 9, 812 37 Bratislava, Slovak Republic
Bibliografia
  • 1. Kim SB, Yi NH, Kim HY, Kim JH, Song YCh. Material and structural performance evaluation of recycled PET fiber reinforced concrete. Cement & Concrete Comp.; 2010; 32: 232-240.
  • 2. Broda J, Brachaczek W. Influence of Polypropylene Fibre Geometry on the Mechanical Properties of Cement Mortars. FIBRES & TEXTILES in Eastern Europe 2015; 23, 2(110): 123-129.
  • 3. Tighiouart B, Benmokrane B, Gao D. Investigation of bond in concrete member with fiber reinforced polymer (FRP) bars. Construction and Building Mat.; 1998; 12: 453-462.
  • 4. Zollo RF. Fiber-reinforced concrete: an overview after 30 years of development. Cement and Concrete Comp. 1997; 19: 107-122.
  • 5. Lane JM, Hourston DJ Surface treatments of polyolefins. Progress in Organic Coatings; 1993; 21: 269-284.
  • 6. Wang W, Wang L, Shi Q, et al. Progress of the Surface Modification of PP Fiber Used in Concrete. Polymer-Plastics Techn and Eng; 2006; 45: 29-34.
  • 7. Naik TR, Singh SS, Huber CO, Brodersen BS. Use of post-consumer waste plastics in cement-based composites. Cement and Concrete Res. 1996; 26: 1489-1492.
  • 8. Koh SK, Cho JS, Kim KH, Ha S, Beag YW. Altering a polymer surface chemical structure by an ion-assisted reaction. J Adhesion Sci and Techn; 2002; 16: 129- 142.
  • 9. Berto TD. Method for making a plastic aggregate, United States Patent 603057.2; 2000.
  • 10. Wun HC, Li VC. Fiber cement interface tailoring with plasma treatment. Cement and Concrete Comp. 1999; 21: 205-212.
  • 11. Sadrmomtazi A, Fasihi A, Haghi AK. Effect of PP fibers on mechanical and physical properties of mortars containing nano-SiO2. Proceedings of 3rd International Conference on Concrete & Development, Building and Housing Research Center, Tehran, Iran, 2009, 1163-1172.
  • 12. Ujhelyiová A, Horbanová Ľ, Michlík P, Vencelová P. Effect of Nanoadditive on the thermo-mechanical and Mechanical Properties of Filled PP Fibers. Book of Proceedings, 6th International Textile, Clothing & Design Conference, Dubrovnik, Croatia, 2012, 122-127.
  • 13. Wu W, Wagner MH, Xu Z. Surface treatment mechanism of nano-SiO2 and the properties of PP/nano-SiO2 composite Materials. Colloid Polym Sci. 2003; 281: 550–555.
  • 14. Wang D, Feng Y, Han L, Tian Y. Effect of Wet Surface Treated Nano-SiO2 on Mechanical Properties of PP Composite. J Wuhan University of Technology-Mater. Sci. Ed. 2008; 23: 354-357.
  • 15. Cai LF, Mai YL, Rong MZ, Ruan WH, Zhang MQ. Interfacial effects in nano-silica/PP composites fabricated by in-situ chemical blowing. eXPRESS Polymer Letters; 2007; 1: 2-7.
  • 16. Marcinčin A, Ujhelyiová A, Marcinčin K, Alexy P. Nucleation of the beta-Modification of Isotactic Polypropylene. J. Thermal Analysis; 1996; 46: 581-595.
  • 17. Fabia J, Janicki J, Ślusarczyk C, Rom M, Graczyk T, Gawłowski A. Study of Structure of Polypropylene Microfibres Modified with Multi-Walled Carbon Nanotubes. FIBRES & TEXTILES in Eastern Europe 2015; 23, 3(111): 38-44. DOI: 10.5604/12303666.1151773.
  • 18. Ujhelyiová A, Strecká Z, Bolhová E, Dulíková M, Bugaj P. Polypropylene fibres modified polyvinyl alcohol and nanoadditive. Structure and properties. FIBRES & TEXTILES in Eastern Europe; 2007; 15, 5-6 (64-65): 37-40.
  • 19. Škrovanová L, Borsig E, Streller R, et al. Polypropylene plus boehmite nanocomposite fibers. Journal of Polymer Engineering; 2012; 32: 445-451.
  • 20. Paukszta D, Borysiak S. The Influence of Processing and the Polymorphism of Lignocellulosic Fillers on the Structure and Properties of Composite Materials – A Review. Materials; 2013; 6: 2747- 2767.
  • 21. Paukszta D, Zielinska-Mackowiak J. Crystallisation of polypropylene matrix in composites filled with wooden parts of rapeseed straw. J Therm Anal Calorim; 2012; 109: 611-618.
  • 22. Borysiak S, Klapiszewski L, Bula K, Jesionowski T. Nucleation ability of advanced functional silica/lignin hybrid fillers in polypropylene composites. J Therm Anal Calorim; 2016; 126: 251-262.
  • 23. Odalanowska M, Borysiak S. Analysis of the Nucleation Activity of Wood Fillers for Green Polymer Composites. FIBRES & TEXTILES in Eastern Europe; 2018; 26: 2(128): 66-72. DOI: 10.5604/01.3001.0011.5741.
  • 24. Naffakh M, Martín Z, Marco C, Gómez MA, Jiménez I. Isothermal crysatllization kinetics of isotactic PP with inorganic fullerene-like WS2 nanoparticles. Thermochimica Acta, 2008; 472: 11-16.
  • 25. Papageorgiou GZ, Achilias DS, Bikiaris DN, Karayannidis GP. Crystallization kinetics and nucleation activity of filler in PP/surface-treated SiO2 nanocomposites. Thermochimica Acta, 2005; 427: 117-128.
  • 26. Zhang QX, Yu ZZ, Xie XL, Mai YW. Crystallization and impact energy of PP/ CaCO3 nanocomposites with nonionic modifier. Polymer 2004; 45: 5985-5994.
  • 27. Chan ChM, Wu J, Li JX, Cheung YK. PP/calcium carbonate nanocomposites. Polymer 2002; 43: 2981-2992.
  • 28. Yiping H, Guangmei Ch, Zhen Y, Hongwu L, Yong W. Non-isothermal crystallization behaviour of PP with nucleating agents and nano-calcium carbonate. European Polymer J. 2005; 41: 2753- 2760.
  • 29. Yuan Q, Awate S, Misra RDK. Nonisothermal crystallization behaviour of PP-clay nanocomposite. European Polymer J. 2006; 42: 1994-2003.
  • 30. Marcinčin A, Hricová M, Ujhelyiová A, Brejka O, Michlík P, Dulíková M, Strecká Z, Chmela S. Effect of Inorganic (Nano) fillers on the UV Barrier Properties, Photo and Thermal Degradation of PP Fibers. FIBERS & TEXTILES in Eastern Europe 2009; 17, 6 (77): 29-35.
  • 31. Chuah KP, Gan SN, Chee KK. Determination of Avrami exponent by differential scanning calorimetry for non-isothermal crystallization of polymers. Polymer 1998; 40: 253-259.
  • 32. Cho K, Li F, Choi J. Crystallization and melting behaviour of PP and maleated PP blends. Polymer 1999; 40: 1719- 1729.
  • 33. Di Lorenzo ML, Silvestre C. Non-isothermal crystallization of polymers. Prog. Polym. Sci. 1999; 24: 917-950.
  • 34. Avrami MJ. J. Chem. Phys. 1941; 9: 177.
  • 35. Ozawa T. Kinetics of non-isothermal crystallization. Polymer 1971; 12: 150-158.
  • 36. Dobreva A, Gutzow I. Activity of substrates in the catalyzed nucleation of glass-forming melts. I. Theory. J. Non- Cryst. Solids 1993; 162: 1-12.
  • 37. Dobreva A, Gutzow I. Activity of substrates in the catalyzed nucleation of glass-forming melts. II. Experimental evidence. J. Non-Cryst. Solids 1993; 162: 13-25.
  • 38. Mandelkern L. Crystallization of polymers. McGraw-Hill, New York, N.Y., 1994; 306.
  • 39. Sharples A. Overall kinetics of crystallization, In: Sharples, A., ed. Introduction to polymer crystallization. London, Edward Arnold, 1996; 44-59.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15ead247-ed3e-421f-b422-e5e15dd8a3c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.