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Abstract 

In the paper there is proposed an algorithm of an efficient semi-active control of steady-state periodic lateral 
vibrations of the overhung rotor-shaft system. This algorithm has been developed using fundamentals of the 

Optimal Control Theory. In the considered system the control is realized by means of the linear dampers with 

the magneto-rheological fluid built in the bearing housing. The computational example demonstrates 
possibilities of the applied approach resulting in an additional reduction of out-of-resonance and near-

resonance harmonic oscillation amplitudes in comparison with an analogous passive control. 
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1. Introduction  

Heavy rotors suspended in bearings in an overhung way constitute a wide class of 

rotating machinery. Typical examples of this group are pumps, compressors, blowers, 

gas turbines, crushers, beater mills, drums of washing machines and many others. As it 

follows e.g. from [1,2], at high rotational speeds they are sensitive to gyroscopic effects 

associated by their lateral vibrations excited mainly by residual unbalances as well as by 

assembly misalignments, rubbing effects in bearings, sealings or blade rims and by other 

sources. Such oscillations are usually very detrimental and a suppression of their 

amplitudes is an important challenge in order to assure precise motions of such rotor-

shaft systems, possibly small bearing reactions, minimized danger of material fatigue 

and low level of generated noise. This target can be effectively achieved by means of a 

semi-active control of lateral vibrations affecting the rotor-shaft systems with overhung 

rotors. For this purpose, similarly as e.g. in [3], actuators with the magneto-rheological 

fluid (MRF) are going to be applied. Such an approach seems to be very convenient for 

rotor machines like vacuum pumps, turbo-chargers, washing machines, precise spindles 

and others rotating with high speeds in steady-steady state operating conditions under 

harmonic external excitations due to residual unbalances and the mentioned above 

dynamic effects. It is to emphasize that, contrary to a control of transient or resonant 

vibrations, for which many algorithms turned out to be effective, a suppression of forced, 

steady-state oscillations with frequencies far away from resonance zones is an extremely 

difficult task. Here, in cases of the abovementioned rotor machines even a few-percent 

minimization of fluctuation amplitudes can be very fruitful from the viewpoint of 

material fatigue, precision of motion, dynamic interaction with an environment, 

detrimental noise generation and many other factors. Thus, in order to achieve this 

target, in the paper for the actuators with the MRF a control strategy based on the 



274 

Optimal Control Theory (OCT) will be applied for the high-speed overhung rotor-shaft 

under steady-state harmonic lateral vibrations. The obtained results of simulations are 

going to be compared with the analogous ones determined for additional passive 

damping applied into the considered system as well as using the numerical optimization 

control algorithm. 

2. Modelling of the rotor-shaft and mathematical formulation of the problem 

In many cases the high-speed rotating machines are characterized by heavy, lumped 

overhung rotors attached on short, dumpy shafts suspended on relatively flexible bearing 

supports. Thus, deformations of such rotor-shafts can be neglected and then only rotor-

shaft inertial parameters and bearing support visco-elastic properties play a predominant 

role in lateral vibrations of these objects. According to [1], if a maximal static deflection 

of such rotor-shaft is of the same order as the bearing clearances, its dynamic behaviour 

can be investigated by means of a rigid body model of four degrees of freedom. Then, 

the generalized coordinates corresponding to them describe two translational 

displacements of the rigid body mass center in the two mutually perpendicular directions 

with respect of the rotor-shaft rotation axis as well as two angular displacements with 

respect of mutually perpendicular axes passing the mass center of this rigid body. In 

order to take into consideration a rotor-shaft support in a possibly general way, the 

anisotropic and non-symmetrical visco-elastic properties of bearings have been assumed 

in the form of stiffness and damping coefficients containing also the proper cross-

coupling terms. The proposed rigid body model of the overhung rotor shaft supported on 

two bearings is presented in Fig. 1.  

 
Figure 1. The rigid-body model of the double-bearing overhung rotor 

Motion of the rotor-shaft has been described in the inertial orthogonal coordinate 

system Oxyz with the origin placed in the rigid body model center of gravity O. Axis Ox 

coincides with the bearing axis and axes Oy, Oz respectively determine the vertical and 

horizontal direction. The plains of bearing interaction cross Ox axis in points A and B 

distant of l1 in the case of bearing #1 and of l2 in the case of bearing #2, as shown in Fig. 
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1. The motion equation of the assumed rotor-shaft rigid body model have the following 

form: 
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where r(t)= col [y(t), z(t), y(t), j(t)] is the generalized coordinate vector with 

components corresponding respectively to the translational displacements along Oy and 

Oz axes and to the angular displacements around Oz and Oy axes. Symbol M denotes the 

diagonal inertial matrix, C and K are respectively the symmetrical bearing damping and 

stiffness matrices and G is the skew-symmetrical matrix of gyroscopic effects. The 

external excitation vector F has the following components:  
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where e is the eccentricity of the rotor-shaft residual static unbalance, M denotes the 

entire mass of the rigid rotor and U(t), V(t) are the control forces acting in the vertical 

and horizontal direction, respectively. Such equations are very convenient here for 

 a demonstration of relatively easy implementation of the proposed algorithm of semi-

active control of the steady state forced lateral vibrations of the considered object.  

The rotating machines usually operate in steady-state conditions at constant 

rotational speeds, more or less far away from the critical ones associated with the 

corresponding lateral eigenvibration modes. Thus, the goal of this paper is to propose a 

computationally effective numerical method for determination of the optimal control 

function applied here for the mechanical system under periodical vibrations due to the 

residual unbalance. In order to distinguish such successive mutually uncoupled 

eigenmodes of the considered gyroscopic, nonconservative rotor-shaft system, it is 

necessary to perform a complex modal analysis of Eqs. (1) according e.g. to the 

approach presented in [2,4]. Then, the investigations reduce to control of steady-state 

harmonic oscillations of simple single degree-of-freedom oscillators shown in Fig. 2 (a).  

 

 
a) 

 
b) 

Figure 2. Single DOF dynamic oscillator (a), controllable damper force function (b) 

An equation of motion of such oscillator has the following form: 
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where according to [4], the modal damping coefficient mc d2= , the modal stiffness 

mk ÷
ø
öç

è
æ += 22 wd , ( )sr wdk -= , m is the modal mass, d, w denote respectively the 

real and imaginary part of the complex eigenvalue corresponding to the considered 

eigenmode, r, s are respectively the real and imaginary part of the complex left 

eigenvector component, x(t) denotes the modal displacement of the controlled 

eigenmode and φ is phase shift angle.  

As shown in Fig. 2b, for the assumed linear relationship between the shaft/bearing 

vibratory velocity and the control force Fc generated by the MRF damper built in the 

bearing housing, one can express in (3): ( ))(txuFc
&= , where u denotes the control 

variable. The slope of the damping force curve depends on the instant value of the 

control current I. Control current cannot exceed the boundary limits maxI,I 0Î . Also, 

it is assumed that the control current can change its value instantly. Because the 

controllable damper characteristic is linear, it may be assumed that: 
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For the simplification of further considerations it is convenient to transform Equation (3) 

into the state-space representation:  
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where state variables are defined in the following form: 
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In order to define the optimal control problem it is necessary to introduce  

a performance index which will represent a measure of vibration level. One of possible 

choices is to select the performance index as a single scalar value that will represent the 

average motion mean energy of the considered system: 
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In the above equation, apart from the motion energy component1/2(kq1
2

+mq2
2 ), the other 

component has been added, namely ru2. This expression refers to the amount of energy 

consumed by the controlled damping element. This component has been added into Eq. 

(7) in order to simplify further transformations. The term ru2 should be treated as 

negligible, since a minimization of the control energy has not been considered as a 

primary goal for mechanical systems under periodical excitation. Therefore, it is 

assumed that scalar r nearly equals zero. Variable E denotes the integrand function. 

Using the Optimal Control Theory (OCT) it is possible to derive the set of equations 

specifying the optimal control function profile u*, providing a minimization of 
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functional J. For this purpose, it is necessary to apply the common OCT control function 

derivation procedure given in [5,6]. It starts with a definition of the Hamiltonian 

function: 

qλ &¢+= EH  (8) 

Next, using the necessary condition for minimization of functional J, namely: the 

following set of equations can be derived:  
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where λ denotes the costate vector. Upon an expansion of the third inequality standing in 

(9) and an application of the Pontryagin principle, finally the following set of equations 

defining the optimal control can be derived:  
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(10) 

 

In order to find exact function values, all equations of the above system have to be 

solved simultaneously. It requires a specification of boundary values of the state and 

costate vectors. For the considered vibrating system one can assume that under optimal 

control function this system will eventually fall into steady-state vibrations, starting from 

an arbitrary initial state condition. Different initial state conditions will only affect a 

duration time of the transient phase of motion up to the instant, when the steady-state 

vibration phase shall be established. Concluding, the initial condition for the state vector 

can be arbitrarily chosen as: 0(0) =q . 

The second condition follows directly from the fundamentals of the OCT. Provided 

that the considered system of Eqs. (10) has to be integrated in the finite time range

fT,t 0Î , the optimal problem in the OCT nomenclature can be classified as free-end, 

fixed-time problem, [5]. The phrase “free-end” refers to a lack of constraints specified 

for the state vector at the end of the simulation time window. The phrase “fixed-time” 
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refers to the finite value of the simulation time range Tf. For such kind of the optimal 

control problem the OCT provides the additional boundary condition, i.e.: (Tf)=0.  

Concluding, because the known boundary conditions are specified partially at the 

beginning and partially at the end of the simulation time window, this problem can be 

classified as the Two-Point Boundary Value Problem (TPBVP). The TPBVPs are 

generally considered as difficult numerical problems. In order to solve the TPBVP for 

the considered system, the following algorithm has been developed: 

1. initialize the (0) vector with random values, 

2. integrate the coupled state-costate equations on the time interval fT,0 assuming 

0(0) =q  and taking (0) from point 1, 

3. after an integration check, whether terminal condition has been satisfied (Tf)=0, 

4. conditional step: 

a. if the terminal condition from step 3 has been satisfied, terminate the algorithm, 

b. if the terminal condition from step 3 has not been satisfied, find the new 

estimation of the (0) condition by means of the external, numerical optimization 

algorithm; then, repeat the steps 1-4 as long as terminal condition is not being 

satisfied. 

 
Figure 3. Optimal control problem computational algorithm 

The algorithm described above can be illustrated by means of the following diagram 

presented in Fig. 3. It is important to choose the sufficiently large Tf value, so the steady-

state phase of motion could be significantly longer than either transient phase at the 

beginning or at the end of the simulation time window.  

3. Computational example  

In the computational example the rigid overhung rotor-shaft of the industrial blower 

supported on two identical rolling bearings is used as an object of considerations. This 

rotor-shaft of a total weight ca. 60.13 kg and of the bearing span 0.275 m is 

characterized by a relatively heavy impeller and light shaft, as shown in Fig. 1. Its total 

polar and diametral mass moments of inertia are respectively equal to 7.02 and 12.75 

kgm2. It is assumed that bushings of the isotropic and radially stiff rolling bearings are 

embedded in the bearing housings by means of layers made of relatively soft and viscous 

vulcanized rubber. The bearing suspension stiffness coefficients are assumed constant 

within the entire shaft rotational speed range 0-7200 rpm.  
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In Fig. 4a there are presented the imaginary parts and in Fig. 4b the real parts of four 

eigenvalues of the considered rotor-shaft, where the grey lines correspond to the original 

system and the black ones to the system equipped with the MRF damper built in the 

bearing support #1 and operating passively. From the obtained  plots  it  follows  that  

  

Figure 4. Imaginary (a) and real (b) parts of the rotor-shaft eigenvalues 

 
Figure 5. Entire vibratory mechanical energy profiles for the passive and semi-actively 

damped system for the 1st eigenmode backward precession of 6.1 Hz at 3000 rpm 

the optimal passive control effectively stabilizes the backward and forward branches of 

the second eigenmode and the forward branch of the first eigenmode. But it has almost 

no influence on a stabilization of its backward branch characterized by the close to zero 

natural frequency and modal damping coefficient at greater rotational speeds, Fig. 4. 

However, the semi-active control realized using the MRF damper and the proposed 

control algorithm can result in an effective stabilization of this almost no damped 

backward precession of the 1st eigenmode excited here e.g. by means of periodic 

retarding frictional loads in the bearings. As shown in Fig. 5, the semi-active control 

minimizes fluctuation amplitudes of this backward mode by ca. 8%. Moreover, the semi-

active control suppresses lateral vibration amplitudes even by 10% for the first 

eigenmode forward precession induced by unbalances at the overcritical rotational speed 

110 rev/s, i.e. 6600 rev/min, as it follows from the time-history plots depicted in Fig. 6.  
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Figure 6. Entire vibratory mechanical energy profiles for the passive and semi-actively 

damped system for the 1st eigenmode forward precession of 13.67 Hz at 6600 rpm. 

4. Conclusions  

In the paper there were considered passively and semi-actively controlled periodic lateral 

vibrations of the rigid overhung rotor suspended on flexible bearings equipped with the 

MRF dampers. From the results of an eigenvalue analysis it follows that additional 

passive damping introduced into this system can effectively suppress its oscillation 

amplitudes and increase stability regions only for sufficiently stable eigenmodes. But it 

is not the case for unstable or almost stable eigenmodes, e.g. due to gyroscopic effects or 

skew-symmetrical bearing properties. Here, the semi-active control realized according to 

the proposed algorithm based on the Optimal Control Theory seems to be a very 

advantageous and universal tool for engineering applications tool for stabilization of 

vibrating mechanical systems and for an attenuation of their oscillation amplitudes. 
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