PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of changes in liquid circulation on the mixing power when emptying the tank with a rotating 6FBT impeller

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study presents the results of tests on the mixing power and distribution of three velocity components in the mixing tank for an FBT impeller during tank emptying with an operating impeller. A laser PIV system was used to determine speed distributions. It was found that for the relative liquid height in the tank H* = H/H0 ≈ 0.65 and H* ≈ 0.45, the liquid circulation in the impeller zone changed from radial to axial and vice versa. These changes were accompanied by changes in the mixing power which even reached 40%. In the theoretical part, a method of calculating the mixing power using the classical model of the central vortex and distribution of the tangential speed in the impeller zone was proposed. Although the method turned out to be inaccurate, it was useful for determining the relative power.
Rocznik
Strony
art. no. e3
Opis fizyczny
Bibliogr. 41 poz., rys.
Twórcy
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Wólczańska 213, 93-005 Łódź, Poland
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Wólczańska 213, 93-005 Łódź, Poland
  • Czech Technical University in Prague, Faculty of Mechanical Engineering, Technická 4, 166 07 Praha 6, Czech Republic
  • Czech Technical University in Prague, Faculty of Mechanical Engineering, Technická 4, 166 07 Praha 6, Czech Republic
Bibliografia
  • 1. Aiba S., Humphrey A.E., Millis N.F., 1973. Biochemical engineering. 2nd edition, University of Tokyo Press, Tokyo.
  • 2. Beshay K., Kratěna J., Fořt I., Brůha O., 2001. Power input of high-speed rotary impellers. Acta Polytech., 41, 18–23. DOI: 10.14311/280.
  • 3. Campesi A., Cerri M.O, Hokka C.O., Badino A.C., 2009. Determination of the average shear rate in a stirred and aerated tank bioreactor. Bioprocess Biosyst. Eng., 32, 241–248. DOI: 10.1007/s00449-008-0242-4.
  • 4. Caşcaval D., Galaction A.-I., Turnea M., 2011. Comparative analysis of oxygen transfer rate distribution in stirred bioreactorfor simulated and real fermentation broths. J. Ind. Microbiol. Biotechnol., 38, 1449–1466. DOI: 10.1007/s10295-010-0930-3.
  • 5. Delafosse A., Morchain J., Guiraud P., Liné, A., 2009. Trailing vortices generated by a Rushton turbine: Assessment of URANS and large eddy simulations. Chem. Eng. Res. Des., 87, 401–411. DOI: 10.1016/j.cherd.2008.12.018.
  • 6. Delvigne F., Destain J., Thonart P., 2006. A methodology for the design of scale-down bioreactors by the use of mixing and circulation stochastic models. Biochem. Eng. J., 28, 256–268. DOI: 10.1016/j.bej.2005.11.009.
  • 7. Ditl P., Šulc R., Pešava V., Jašíkova D., Kotek M., Kopecký V., Kysela B., 2018. Local turbulent energy dissipation rate in an agitated vessel, experimental and turbulence scaling. Theor. Found. Chem. Eng., 52, 122–134. DOI: 10.1134/S0040579518010037.
  • 8. Ducci A., Yianneskis M., 2006. Turbulence kinetic energy transport processes in the impeller stream of stirred vessels. Chem. Eng. Sci., 61, 2780–2790. DOI: 10.1016/j.ces.2005.09.020.
  • 9. Furukawa H., Kato Y., Inoue Y., Kato T., Tada Y., Hashimoto S., 2012. Correlation of power consumption for several kinds of mixing impellers. Int. J. Chem. Eng., 2012, 106469. DOI: 10.1155/2012/106496.
  • 10. Galaction A.-I., Cascaval D., Oniscu C., Turnea M., 2004. Enhancement of oxygen mass transfer in stirred bioreactors using oxygen-vectors. 1. Simulated fermentation broths. Bioprocess Biosyst. Eng., 26, 231–238. DOI: 10.1007/s00449-004-0353-5.
  • 11. Ghotli R.A., Raman A.A., Shaliza Ibrahim, Saeid Baroutian, 2013. Liquid-liquid mixing in stirred vessel: A reviev. Chem. Eng. Commun., 200, 595–627. DOI: 10.1080/00986445.2012.717313.
  • 12. Gzowska A., 2019. Testing the mixing power and hydrodynamics of a new type of impeller for mixing biosuspensions. MSc Thesis, Lodz University of Technology (in Polish).
  • 13. Hargreaves D.M., Kakimpa B., Owen J.S., 2014. The computational fluid dynamics modelling of the autorotation of square, flat plates. J. Fluids Struct., 46, 111–133. DOI: 10.1016/j.jfluidstructs.2013.12.006.
  • 14. Heim A., Stelmach J., 2011. The comparison of velocities at the self-aspirating disk impeller level. Przemysł Chemiczny, 90/9, 1642–1646 (in Polish).
  • 15. Huchet F., Liné A., Morchain J., 2009. Evaluation of local kinetic energy dissipation rate in the impeller stream of a Rushton turbine by time-resolved PIV. Chem. Eng. Res. Des., 87, 369– 376. DOI: 10.1016/j.cherd.2008.11.012.
  • 16. Joshi J.B., Nere N.K., Rane C.V., Murthy B.N., Mathpati C.S., Patwardhan A.W., Ranade V.V., 2011. CFD simulation of stirred tanks: Comparison of turbulence models. Part I: Radial flow impellers. Can. J. Chem. Eng., 89, 23–82. DOI: 10.1002/cjce.20446.
  • 17. Lee K.C., Yianneskis M., 1998. Turbulence properties of the impeller stream of a Rushton turbine. AIChE J., 44, 13–24. DOI:10.1002/aic.690440104.
  • 18. Li Z., Bao Y., Gao Z., 2011. PIV experiments and large Eddy simulations of single-loop flow field Rushton turbine stirred tanks. Chem. Eng. Sci., 66, 1219–1231. DOI: 10.1016/j.ces. 2010.12.024.
  • 19. Mazoch J., Rieger F., Jirout T., 2016. Report TH 01020879, TECHMIX, Brno, Czech Republic (in Czech).
  • 20. Mohammed A.K., Hussen H.A., Al-Rassul S.A., 2008. Performance of gas induction in a dual – impeller agitated bioreactor. Al-Khwarizmi Eng. J., 4(4), 1–8.
  • 21. Nagata S., 1975. Mixing: Principles and applications. John Wiley& Sons, New York, NY, USA.
  • 22. Ortiz X., Hemmatti A., Rival D., Wood D., 2012. Instantaneous forces and moments on inclined flat plates. The Seventh International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7), Shanghai, China.
  • 23. Ortiz X., Rival D., Wood D., 2015. Forces and moments on flat plates of small aspect ratio with application to PV wind loads and small wind turbine blades. Energies, 8, 2438–2453. DOI:10.3390/en8042438.
  • 24. Paul E.L., Atiemo-Obeng V.A., Kresta S.M., 2004. Handbook of industrial mixing. John Wiley & Sons: Hoboken, NJ, USA.
  • 25. Raffel M., Willert C., Wereley S., Kompenhans J., 2007. Particle image velocimetry. A practical guide. 2nd edition, Springer Berlin, Heidelberg. DOI: 10.1007/978-3-540-72308-0.
  • 26. Rieger F., Moravec J., Stelmach J., Kuncewicz Cz., 2021. Effect of modification of the stirrer with folding blades on the increase in mixing power during emptying the tank. Przemysł Chemiczny, 100/12, 1231–1235. DOI: 10.15199/62.2021.12.15.
  • 27. Sharp K.V., Adrian R.J., 2001. PIV study of small-scale flow structure around a Rushton turbine. AIChE J., 47, 766–778. DOI: 10.1002/aic.690470403.
  • 28. Sheng J., Meng H., Fox R.O., 2000. A large eddy PIV method for turbulence dissipation rate estimation. Chem. Eng. Sci., 55, 4423–4434. DOI: 10.1016/S0009-2509(00)00039-7.
  • 29. Ståhl-Wernersson E., Trägårdh C., 1998. Scaling of turbulence characteristics in a turbine-agitated tank in relation to agitation rate. Chem. Eng. J., 70, 37–45.
  • 30. Ståhl-Wernersson E., Trägårdh C., 2000. Measurements and analysis of high-intensity turbulent characteristics in a turbineagitated tank. Exp. Fluids, 28, 532–545. DOI: 10.1007/s003480050414.
  • 31. Stelmach J., 2014. Hydrodynamics of a two-phase liquid-gas system in a mixer – the use of photo-optical methods. Lodz Uni- versity of Technology (in Polish).
  • 32. Stelmach J., Kuncewicz Cz., Adrian Ł., Jirout T., Rieger F.,2021b. Change in mixing power of a two-PBT impeller when emptying a tank. Processes, 9, 341. DOI: 10.3390/pr9020341.
  • 33. Stelmach J., Kuncewicz Cz., Rieger F., Morawec J., Jirout T., 2020. Increrase of mixing power during emptying of tanks with turbine-blade impellers. PrzemysłChemiczny, 99/2, 239–243. DOI: 10.15199/62.2020.2.11.
  • 34. Stelmach J., Kuncewicz Cz., Szufa S., Jirout T., Rieger F.,2021a. The influence of hydrodynamic changes in a system with a pitched blade turbine on mixing power. Processes, 9, 68. DOI: 10.3390/pr9010068.
  • 35. Stręk F., 1971. Mieszanie i mieszalniki. WNT, Warszawa.
  • 36. Stręk F., 1981. Mieszanie i mieszalniki. 2nd edition. WNT, Warszawa.
  • 37. Uhl V.W., Gray J.B., 1966. Mixing. Theory and practice. Academic Press, New York & London, Vol. I, pp. 7–110.
  • 38. Wu H., Patterson G.K., Van Doorn M., 1989. Distribution of turbulence energy dissipation rates in a Rushton turbine stirred mixer. Exp. Fluids, 8, 153–160. DOI: 10.1007/BF00195789.
  • 39. Zadghaffari R., Moghaddas J.S., Revstedt J., 2010. Largeeddy simulation of turbulent flow in a stirred tank driven by a Rushton turbine. Comput. Fluids, 39, 1183–1190. DOI: 10.1016/j.compfluid.2010.03.001.
  • 40. Zhao Y., Xiangyang Li, Jingcai Cheng, Chao Yang, Zai-Sha Mao, 2011. Experimental study on liquid–liquid macromixin in a stirred tank. Ind. Eng. Chem. Res., 50, 10, 5952–5958. DOI: 10.1021/ie102270p.
  • 41. Zlokarnik M., 2001. Stirring. Theory and practice. Wiley-VCH, Weinheim.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15e48384-24d9-4d3e-bcfb-772aac8fb036
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.