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Abstract. The vibrations and stability of a plate having a finite length were considered 

in a flat supersonic flow, having adopted an assumption that one of the edges of the 

plate has a hinged support, and the other edge is free. Another support was located in an 

internal point of the plate and featured resilient attenuation properties. A compressive 

force, called the follower force, was applied within the plane of the plate in a direction 

tangent to the deformed surface of the plate. This way, a superficial system was forced 

in which two independent physical factors occurred and caused its self-excitation. 

Therefore the superficial system could be termed a ‘double self-excited system’. The 

solution of the equations of motion for the system was derived with a Laplace 

transformation. 
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In the further part of the work, a numerical analysis was carried out for the 

conditions of the occurrence of self-excited vibrations in relation to the position of the 

internal support (the so-called plate overhang), the damping within the material of the 

plate and other parameters of the plate, including the resilient attenuation parameters of 

the internal support. For the adopted parameters, the results were tested for the 

calculations of the stability area limits and the instability of the system in plane γ1, σ. 

The forms of vibrations for a series of typical cases was determined. 

Keywords: mechanics, aeroelasticity, computer calculations 

 

  1.  FORMULATION OF THE PROBLEM 

 
The vibrations and stability of superficial systems exposed to supersonic 

flow conditions have been investigated in a number of scientific papers (see e.g. 

[1], [2], [5] and the references therein). The effect of follower forces on the 

stability of superficial systems was investigated in [3] and [6] to [9], whereas 

the vibrations and stability of bracket plates exposed to supersonic flow 

conditions and a follower force was researched in [4]. 

In this paper, which is an expanded analysis of the problem detailed in [9], 

necessitated by different conditions of support, a plate of a finite length L was 

investigated being exposed to single-sided flat supersonic flow at a velocity of 

U0 > a0 (Fig. 1.1), with a0 being the speed of sound. 

The left-hand edge of the plate was supported with a hinge; the other, inner 

edge of the plate featured a resilient support with a rigidity of k and an 

attenuation coefficient of c. The right-hand edge of the plate was free. Two 

directions of supersonic flow at a velocity of U0 were investigated as shown in 

Fig. 1, in case (1) and (2). 

 

Fig. 1.1. Model of a plate in a supersonic flow subject to the application 

of a follower force applied and equipped with an internal resilient 

attenuation support 
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The equation of motion of the plate was shown in the forms [1], [2], [4], 

and [9]: 
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 (1.2) 

– differential pressure applied to the plate in case (1) with the sense (+) or, as 

shown in case (2) with the sense (-) preceding the second term in (1.2): 
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   (1.3) 

D – bending rigidity of the panel; Θ – material attenuation coefficient, per the 

Voigt model; ρp – material density of the plate; h – thickness of the plate;  

ρ0 – gas density in a non-turbulent flux; M – Mach number of the gas flow. 

For the left-hand edge of the plate, given x = 0, the boundary conditions 

were assumed as follows for the case of the hinge-supported edge: 

  
 

0
,

,0

0

2

2







x
x

txW
tW  (1.4) 

For the right-hand free edge of the plate, with x = L, the following 

boundary conditions were assumed: 
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At the inner point of interval (0, L), where the resilient attenuation inner 

support was located, two geometric conditions had to be satisfied, where one of 

them was imposed from the continuity of deflection: 

     0,0,0  tLWtLW xx  (1.6) 

the other was imposed by the continuity of deflection angles: 
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Further conditions which needed to be satisfied for x = Lx, were two static 

equilibrium conditions in the following forms: 
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 (1.9) 

The problem was investigated as a dimensionless one, with the assumption 

that displacements W and coordinate x referred to the plate length, L, i.e. ξ =x/L, 

whereas time t referred to 1/ω1, i.e. τ = t ω1 , with:  
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– basic natural vibration frequency of the plate with the fixed hinged support in 

a vacuum at N0 = Θ = 0. 

Hence, equation (1.1) was as follows with dependence (1.2): 
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with: 
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The formula of γ1 had the sense (+) or (-), respective to the direction of 

flow, not unlike in equation (1.2). Boundary conditions (1.4) to (1.9) for 

dimensionless coordinates (+) were formulated as follows: 
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For the internal point of interval (0, 1): 

     0,0,0   xx WW  (1.15) 
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with: 
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Equation (1.11) featured two dimensionless parameters, S0 and γ1, which 

could trigger self-excitation of the system. This is why the system was termed  

a ‘double self-excited system’. 

 

2. SOLUTION OF THE PROBLEM 

Given the discontinuity of the parameters within interval (0, 1), i.e. ξ = ξx 

the solution to equation (1.11) was sought in the following form: 
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where function Wj(ξ) satisfied this equation 
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For the first interval (0 ≤ ξ ≤ ξx), the application of the Laplace 

transformation expressed as 
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to equation (2.2), the solution in the image domain had the form of 
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with        0,0,0,0 1111 VVVV  as the original values of function  1V  and its 

derivatives, whereas the substituted coefficients bj described these dependences 
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Further on, the use of the denotations 

       0,00,0,00 113112111110 VVVV     (2.6) 

and equation (2.4) in a form convenient for further operations was 
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The inverse Laplace transform applied to equation (2.7), and given 

boundary conditions (2.6), the result was 

          131121  KKbKV     (2.8) 

The theorem of original differentiation for the second interval, i.e.  

(ξx ≤ ξ ≤ 1) could not be applied to the function present in that interval with an 

offset of V2(ξ – ξx), since the function was differentiable at point ξ = ξx. This 

restriction was correct if derivative  xV  
2

 was determined in classical 

analytical terms, like in [10]. However, with the following assumption 

    xxV  
2  (2.9) 

the rule could be applied, because 

        xxx VVsV  
222 LL  (2.10) 

Detailed contemplations of the Laplace transformation into the function 

with an offset can be found in [10], which is dedicated fully to the practical 

applications of the Laplace transformation. 

Having reached the foregoing notes, for the second interval (see eq. (2.1)), 

equation (2.2) in the original space and given the used denotations (2.5) was 
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which, following the Laplace transformation, i.e. the transition from the original 

space to the image space, led to this expression 
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With the conventional denotations from (2.6), i.e. the first subscript 

denoted the integration range and the second subscript denoted the order of the 

derivative, the following was obtained in the second interval: 

        xxxx VVVV   223222221220 ,,,  (2.13) 

The inverse Laplace transform on equation (2.12) with the boundary 

conditions of (2.6) and (2.13), and with the necessary transformations, defined 

the sought displacement function  aV  2  
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The unknown coefficients νij present in equations (2.8) and (2.14) were 

determined with the geometric boundary conditions of (1.15) and (1.16), and the 

static boundary conditions of (1.14), (1.17), and (1.18), which assumed the 

following form when substituted to (2.1): 
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Function K(ξ) in equations (2.8) and (2.14) was determined in the 

following form 
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with sj being the radicals of the characteristic equation (see (2.4)) 
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whereas coefficients cj were expressed as 
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With the originals of function Vj(ξ) known as described with equations 

(2.8) and (2.14), the boundary conditions of (2.15) to (2.19) provided the 

following matrix system of uniform equations 
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with vector ν having these components 
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whereas the matrix elements w were 
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The solution which presented the steady-state vibrations of the system 

could be expressed as follows: 
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with: 
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The frequency equation expressed from the system of uniform equations in 

(2.23), i.e. 

   0det  w  (2.28) 

was applied to analyse the stability and vibrations of the investigated system. 

 

3. NUMERICAL ANALYSIS OF SELF-EXCITED VIBRATIONS 

 
The trend of the critical parameters of self-excited vibrations was 

investigated in relation to the plate overhang dimensionless parameter value of 

ξx = Lx/L and a number of other data items. The frequency equation of (2.28) 

was applied to analyse the stability and vibrations of the investigated system. In 

a general case, vibrational frequency p was assumed to be complex: 

 ,iqp   (3.1) 

this facilitated the following general expression: 

 ,0ImRe  i  (3.2) 

For the given values of S0, γ1, γ2, Θr, kr, cr, ξx, the frequency equations of 

(3.2) facilitated the determination of the system’s natural vibration frequency  

q = qn, n = 1, 2, … and the decay decrements ε = εn < 0 (for attenuated 

vibrations) or the decrements of increase ε = εn > 0 (for unstable self-excited 

vibrations). The frequency vibrations also facilitated the determination of the 

critical parameters of self-excited vibrations of the system, Sokr, qkr, at ε = 0 and 

the given γ1, γ2, Θr, kr, cr, ξx, or γ1kr, qkr at ε = 0 and the assumed S0, γ2, Θr, kr, cr, 

ξx, with Sokr and γ1kr were the smallest values of S0 and γ1 that occurred at the 

vibration stability limit, whereas qkr was the vibration frequency for which ε = 0 

at S0 = S0kr or γ1 = γ1kr. 

If q = ε = 0, then for the assumed values of all other parameters in the 

frequency equations, the divergent stability loss limits could be determined as 

the values of Sokr and γ1kr.  
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3.1. Determination of the critical parameters of the plate on a fixed 

hinged support with a small overhang (x = 0.9) 

 

The critical parameters were determined for the investigated case by testing 

the trends of the solutions to equation (2.28) in the vicinity of the few first 

natural vibration frequencies of the system, and at these frequencies, self-

excited vibrations would usually occur. Solving equation (2.28) divided into the 

real part and the imaginary part (3.2) for harmonic vibrations (ε = 0) and non-

stationary vibrations (ε ≠ 0) in dependence of S0, γ1, δ Θr and kr, cr, plane γ1 – q 

featured the plots of roots of equations (3.2), the examples of which, given  

ε = 0, are shown in Fig. 3.1 at σ = 0 and in Fig. 3.2 at σ = 2. The parameter input 

σ was described with the following dependence: 

 
2

0  S  (3.3) 

 

The plots in the foregoing figures were charted for dimensionless 

parameters of flow δ = 0.1, Θr = 0, and support kr = 1∙108, cr = 0, which was 

infinitely rigid in this case. The characteristic points of intersection of plots  

ReΔ = 0 and ImΔ = 0 are detailed in the key to the figures. The essence of the 

figures was to demonstrate the effect of the plate overhang, i.e. ξx < 1, on the 

critical parameters of the system in both directions of flow shown in Fig. 1.1.  

Fig. 3.1. Plots ReΔ = 0 and ImΔ = 0 at σ = 0 and ξx = var 
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A preliminary analysis of the figures revealed that plots ReΔ = 0 became 

desymmetrised, whereas at higher values of the overhang, plot ReΔ = 0 

assumed a more complex form on plane γ1 - q , with e.g. the lower divergence 

limit gone with the negative sense of flow, i.e. γ1 < 0. 

 

The critical parameters of self-excited vibrations and divergence plotted in Figs. 

3.1 and 3.2 are listed in Table 3.1. 

Table 3.1. 

σ  ξx 
Flutter limit Divergence limit 

upper lower upper lower 

qkr γ1kr qkr  γ1kr  γ1kr  γ1kr  

0 

1.0 3.24449 347.459 3.29449 -347.459 ----- ---- 

0.9 4.22789 500.692 3.65988 -435.699 ----- ---- 

0.8 5.52657 753.285 6.29635 -892.323 ----- -182.993 

0.7 7.16682 1136.14 7.46485 -1166.61 ----- -69.3533 

2 

1.0 2.08332 191.732 2.08332 -1191.73 105.641 -105.641 

0.9 3.04352 317.548 2.60256 -278.20 114.673 -133.958 

0.8 4.38985 540.609 5.42368 -716.327 75.536 ---- 

0.7 6.06551 889.009 6.47705 -937.411 -3.557 ---- 

Fig. 3.2. Plots ReΔ = 0 and ImΔ = 0at σ = 2 and σ = 0  
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The following figure, 3.3, illustrates the calculation results for the stable 

and unstable vibration areas and the flutter and divergence limits in plane q – γ1. 

The calculations were completed for the plate with an overhang of 0.1L, i.e., 

following the notation from Fig. 1.1, the assumptions were ξx = 0.9, kr = 108,  

cr = 0. Other parameters not denoted in the plane of the figure were: δ = 0.1,  

Θr = 0.  

A reference of the resulting solution to the universal results in [9] from the 

testing of a plate without any overhang, the foremost conclusion was that no 

discernible differences in quality were found. The divergence limit plots formed 

a closed oval form, as before, which was slightly desymmetrised against axis  

γ1 = 0, not unlike the flutter upper and lower limits. For unstable self-excited 

vibrations, the calculations were completed at ε > 0, and the area of unstable 

self-excited vibrations was thus determined. 

Further on, the forms of vibration at the stability limits were determined at 

the characteristic points (1) and (2) shown in Fig. 3.3 for both directions of flow 

(shown with the arrow on the same figure) and for dimensionless parameter  

τ = qt/2π (Figs. 3.4 and 3.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.3. Plate stability limits on plane σ – γ1 

 0,1.0,0,10,9.0 8  rrrx ck 
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Fig. 3.4. Forms of vibration for the plate with a single moving  

node (→)   

Fig. 3.5. Forms of vibration for the plate with a single moving  

node (←) 
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3.2. Determination of the critical parameters of the plate on a fixed 

hinged support with a moderate overhang (x = 0.8) 

 

The next step of the numerical tests was to determine the effect of the plate 

overhang size while assuming infinite rigidity of the plate support, kr = 108, and 

two plate overhang values, ξx = 0.8 and ξx = 0.9. 

The solutions are illustrated in Fig. 3.6, which demonstrates their 

significant change from the solution to ξx = 0.8. At higher plate overhang 

values, the divergence limit ceased to form a closed, oval-like curve and became 

an open curve with the origin on axis σ = 0. The characteristic points along the 

curve are the tangential points of the flutter limit plots with a positive sense of 

flow (σ = 5.683; γ1 = 197.2) and a negative sense of flow (σ = 8.2; γ1 = -451.4), 

and two extreme (and reflexive) points with the values (σ = 6.414; γ1 = 72.49) 

and (σ = 4.094; γ1 = -269.4), respectively. The same figure shows marked areas 

of stable and unstable vibrations, with a selection of 16 characteristic points for 

which the forms of vibration and the forms of divergent stability loss were 

determined.  

 

The charts for points (2) and (4) aligned with the flutter limit are shown in 

Figs. 3.7 and 3.8, respectively. The parameters for which these plots were 

charted are shown in the planes of the same figures and in the keys; the 

important notes resulting from the trends of the plots are listed below the 

respective figures. 

Fig. 3.6. Plate stability limits on plane σ – γ1 

 0,1.0,0,10,9.0,8.0 8  rrrxx ck 
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The following figure, 3.9, shows a summary of the trends of divergent 

stability loss for a selection of characteristic points, (6) to (16), which were 

positioned in detail in Fig. 3.6. The key and description of the figure detail the 

parameters assumed for their numerical calculations.  

Fig. 3.7. Form of vibration for the plate with a single moving node 

(point (2)) 

Fig. 3.8. Form of vibration for the plate with two nodes (point (4)) 



I. Nowotarski 142 

The trends of the plots, and more precisely the number of corresponding 

node points, determined the type of divergent stability loss in the cases 

investigated from divergence 1 to divergence 3 (see details in the key to  

Fig. 3.9). 

 

3.3. Determination of the critical parameters of the plate on  

a moving flexible hinged support with a moderate overhang  

(x = 0.8) 

 
Traditionally, determination of the critical parameters comprised charting 

the plots of ReΔ = 0 on ImΔ = 0 plane q – γ1 for the determined parameters of 

the systems and the variable dimensionless value of follower force σ with the 

determination of the zero points of the characteristic determinant, Δ. In 

compliance with the procedure set forth herein, areas of stable and unstable 

vibrations were plotted for infinite and finite rigidity of support, by sequentially 

assuming kr = 108 and kr = 103. The results are illustrated in Fig. 3.10. 

An analysis of the solution confirmed a known fact from [9] by which the 

reduction of the support rigidity increased the external area of unstable 

vibrations. A novel phenomenon was the emergence of an internal area of 

unstable vibrations (see broken plot lines) in Fig. 3.10. The trends of the flutter 

limits were determined for the positive value of ε = 0.3 of complex frequency q. 

 

 

Fig. 3.9. Forms of divergent stability loss of the plate (points (6) to 

(16)) 
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The characteristic points (2), (3) and (8) shown in Fig. 3.10 corresponded 

to the following forms of vibration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.10. Areas of plate stability on the flexible hinged support with 

a moderate overhang, with the points shown at which the form of 

vibration trends were determined 

Fig. 3.11. Form of vibration for the plate with a stationary 

internal node (point (2)) 
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A common characteristic of all forms of vibration shown so far was the 

displacement on the resilient support and the significant effect of the direction 

of flow on the form of deformation shown herein. 

Fig. 3.12. Form of vibration for the plate with two nodes: one 

internal and nearly stationary, and one external and evidently 

moving (point (3)) 

Fig. 3.13. Form of vibrations for the plate with one internal 

and evidently moving node (point (8))     
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3.4. Determination of the critical parameters of the plate on  

a moving flexible hinged support with a moderate overhang 

(x = 0.8) at a change of material attenuation, Θr, and 

aerodynamic attenuation, 
 

The first case considered included the effect of material attenuation Θr on 

the locations of stable and unstable vibration areas (Fig. 3.14). An analysis of 

the effect suggested that material attenuation increased the unstable vibration 

areas while the character of the solution was retained. The calculation input 

parameters and a detailed description thereof is shown in the figure plane and 

key. The second case considered concerned the effect of aerodynamic 

attenuation δ on the locations of stable and unstable vibration areas (Fig. 3.15). 

Here, the unstable vibration areas also grew while the character of the solution 

was retained while aerodynamic attenuation grew. The calculation input 

parameters and a detailed description thereof is shown in the figure plane and 

key. 

A general note should be made that both attenuation types for the plate 

with no overhang (see [9]) and the plate with the overhang led to the same 

quantitative conclusions. With the moderate and higher overhangs, i.e. ξx ≤ 0.8, 

the quantitative nature of the solution was quite different. Two new phenomena 

were revealed; first, the internal separation of the divergent stability loss limit 

oval into a single plot line with the origin at axis σ = 0; second, the emergence 

of a stable internal area of unstable vibrations. 

 

Fig. 3.14. Areas of stable and unstable vibration with the change in 

material attenuation Θr 
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4. CONCLUSION FOR THE TEST RESULTS 

 
The analysis completed as contemplated herein determined the 

characteristics of the vibrations and stability of a plate with a finite overhang 

exposed to a supersonic flow and investigated as a double self-excited system, 

in which two independent physical factors occurred that triggered the self-

excitation phenomenon: the supersonic flow and the compressive follower force 

applied in the plate plane. Two directions of supersonic flow were considered 

with an assumption that one of the plate edges was on a hinged support, while 

the other featured a resilient support which assumed different positions along 

the plate length, L. 

The limits of the system’s vibration stability areas were analysed in plane  

(σ, γ1), with γ1 being a dimensionless parameter determining the dynamic 

pressure of the gas flow acting on the vibrating panel, and σ being the 

dimensionless compressive follower force acting within the plate plane. The 

analysis suggested that within that plane, without overhang L - Lx = 0 or with  

a low overhang, L - Lx = 0.1, an oval occurred, which defined the divergence 

limits of the first two natural vibrations of the system in both directions of flow, 

and the plot lines connected to the oval and describing the limits of self-excited 

vibration areas at γ1 ≥ 0 and γ1 ≤ 0, i.e. for both directions of flow. The solutions 

obtained for Lx = 0.9 (the plate with a minimum overhang) and for Lx = 1 (the 

plate with no overhang) feature very little qualitative and qualitative 

differences.  

Fig. 3.15. Areas of stable and unstable vibration with the change in 

aerodynamic attenuation δ 
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In [9] features a series of numerical calculations for Lx = 1 were carried out. 

The results demonstrated how the said ovals and self-excited vibration limits 

changed in relation to the plate support method and other parameters of the 

problem, and thus, they do not require a detailed discussion. The focus hereof 

included the numerical test results with Lx ≤ 0.8. In this case, Lx = 0.8, it was 

found that: (I) the inner oval was divided, with its upper part joining the plot 

axis σ = 0, whereas its lower part, when at high values of σ, which were σ = 9 

here, became tangent with the lower plot of the self-excited vibration area limit; 

(II) two inner areas of unstable vibrations emerged, with the upper one stable 

and the lower one symmetrical to axis γ1 = 0 and unstable (and only 

theoretically feasible), and with Θr ≠ 0, it would not exist. Aside from the 

rigidity of the right-hand resilient support, a major contributor to the locations 

of the stability limits of the system was the values of coefficients  

of aerodynamic attenuation δ, material attenuation Θr, and the attenuation 

within the resilient support cr. It was determined that an increase in 

aerodynamic attenuation (Fig. 3.15) stabilised the system, while material 

attenuation (Fig. 3.14) and the attenuation within the resilient support 

contributed to instability. 
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Drgania i stateczność płyty w opływie naddźwiękowym 

obciążonej siłą śledzącą z przegubową podporą zewnętrzną 

i wewnętrzną sprężysto-tłumiącą 
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Streszczenie. Rozpatrzono drgania i stateczność płyty o skończonej długości w płaskim 

przepływie naddźwiękowym przy założeniu, że jedna z krawędzi płyty jest przegubowo 

podparta, a druga jest swobodna. W wewnętrznym punkcie płyty znajduje się podpora  

o własnościach sprężysto-tłumiących. W płaszczyźnie płyty działa siła ściskająca, która 

jest siłą śledzącą i zachowuje kierunek styczny do odkształconej powierzchni płyty. 

Powstaje w ten sposób układ powierzchniowy, w którym występują dwa niezależne 

czynniki fizyczne będące przyczyną jego samowzbudności. Jest to więc układ, który 

można nazwać układem podwójnie samowzbudnym. Rozwiązanie równań ruchu 

otrzymano za pomocą przekształcenia Laplace’a. W dalszej części pracy 

przeprowadzono numeryczną analizę warunków występowania samowzbudnych drgań 

w zależności od położenia podpory wewnętrznej (tzw. przewieszenia płyty), tłumienia 

w materiale płyty oraz innych jej parametrów, w tym także parametrów sprężysto-

tłumiących podpory. Dla przyjętych parametrów zbadano wyniki obliczeń granic 

obszarów stateczności i niestateczności rozpatrywanego układu na płaszczyźnie γ1, σ. 

i wyznaczono postacie drgań dla szeregu typowych przypadków. 

Słowa kluczowe: mechanika, aerosprężystość, model matematyczny 

 

 

 

 

 

 

 

 


