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Abstract. The vibrations and stability of a plate having a finite length were considered
in a flat supersonic flow, having adopted an assumption that one of the edges of the
plate has a hinged support, and the other edge is free. Another support was located in an
internal point of the plate and featured resilient attenuation properties. A compressive
force, called the follower force, was applied within the plane of the plate in a direction
tangent to the deformed surface of the plate. This way, a superficial system was forced
in which two independent physical factors occurred and caused its self-excitation.
Therefore the superficial system could be termed a ‘double self-excited system’. The
solution of the equations of motion for the system was derived with a Laplace
transformation.



128 I. Nowotarski

In the further part of the work, a numerical analysis was carried out for the
conditions of the occurrence of self-excited vibrations in relation to the position of the
internal support (the so-called plate overhang), the damping within the material of the
plate and other parameters of the plate, including the resilient attenuation parameters of
the internal support. For the adopted parameters, the results were tested for the
calculations of the stability area limits and the instability of the system in plane y1, o.
The forms of vibrations for a series of typical cases was determined.

Keywords: mechanics, aeroelasticity, computer calculations

1. FORMULATION OF THE PROBLEM

The vibrations and stability of superficial systems exposed to supersonic
flow conditions have been investigated in a number of scientific papers (see e.g.
[1], [2], [5] and the references therein). The effect of follower forces on the
stability of superficial systems was investigated in [3] and [6] to [9], whereas
the vibrations and stability of bracket plates exposed to supersonic flow
conditions and a follower force was researched in [4].

2w (1) Upy>a, (2) Up>ao
ApW(x)
N
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W(x,t) c j/.;l k
= Ly
L

Fig. 1.1. Model of a plate in a supersonic flow subject to the application
of a follower force applied and equipped with an internal resilient
attenuation support

In this paper, which is an expanded analysis of the problem detailed in [9],
necessitated by different conditions of support, a plate of a finite length L was
investigated being exposed to single-sided flat supersonic flow at a velocity of
Uo > ao (Fig. 1.1), with ao being the speed of sound.

The left-hand edge of the plate was supported with a hinge; the other, inner
edge of the plate featured a resilient support with a rigidity of k and an
attenuation coefficient of c. The right-hand edge of the plate was free. Two
directions of supersonic flow at a velocity of U, were investigated as shown in
Fig. 1, in case (1) and (2).



Vibrations and Stability of a Plate in Supersonic Flow Subjected... 129

The equation of motion of the plate was shown in the forms [1], [2], [4],
and [9]:

o'W o'W oW
D(l Hatj 5 tNoo T3 =Ap,,(W(x,t)) (1.1)
with:
A, (W (x,0) =22 °[(1—i)% Z—VXV} 12

— differential pressure applied to the plate in case (1) with the sense (+) or, as
shown in case (2) with the sense (-) preceding the second term in (1.2):

o'W oW oW
D(l eatj PV +N, v +p,h e
D - bending rigidity of the panel; ® — material attenuation coefficient, per the
Voigt model; pp, — material density of the plate; h — thickness of the plate;
po — gas density in a non-turbulent flux; M — Mach number of the gas flow.
For the left-hand edge of the plate, given x = 0, the boundary conditions
were assumed as follows for the case of the hinge-supported edge:

"W (x,t)
8)(2

= Ap, ,(W(x,1)) (1.3)

W(0,t)= =0 (1.4)

x=0

For the right-hand free edge of the plate, with x = L, the following
boundary conditions were assumed:

SW(xt)  oW(xt)
ox? e

=0 (1.5)

x=L

x=L

At the inner point of interval (0, L), where the resilient attenuation inner
support was located, two geometric conditions had to be satisfied, where one of
them was imposed from the continuity of deflection:

W(L, -0,t)=W(L, +0,t)=0 (1.6)
the other was imposed by the continuity of deflection angles:
AW (x,t) _aw(xt) 0 L)
8X x=L,—0 8X x=L,+0

Further conditions which needed to be satisfied for x = Ly, were two static
equilibrium conditions in the following forms:
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2 2
AWy W) 18)
aX x=L,—0 aX Xx=L,+0
D(1+ 0, g)_aS\N(;(,t) - D(1+ 0, g)_aaw(ax,t) -
a) o [ ot) ox

x=L,+0 (19)

=kW(L, —0,t)+ CM

The problem was investigated as a dimensionless one, with the assumption
that displacements W and coordinate x referred to the plate length, L, i.e. & =x/L,
whereas time t referred to 1/w, i.e. 7 = ¢ w1, with:

o= |2 (1.10)
pyh

— basic natural vibration frequency of the plate with the fixed hinged support in
avacuum at No= © = 0.
Hence, equation (1.1) was as follows with dependence (1.2):

(1+0r gja“w(cf,r)+S azw(g,r)” oW (&,7)

+

or) o °og Lo (1.11)
g 82\N(§,T)+}/2 5W(f,‘r)=0
or or
with:
N, L uzLe
0, =0m, Sg=—L=, y =Py, =5,

uD

(1.12)

The formula of y: had the sense (+) or (-), respective to the direction of
flow, not unlike in equation (1.2). Boundary conditions (1.4) to (1.9) for
dimensionless coordinates (+) were formulated as follows:

W(0,7)= azw(fvf) -0 (1.13)
0 0
oW (&,7) _ow( 7)) ~0 (1.14)
afz |§:1 853 |<f:1



Vibrations and Stability of a Plate in Supersonic Flow Subjected... 131

For the internal point of interval (0, 1):

W(& -0,7)=W(&, +0,7)=0 (1.15)
W (&,7) _ W) _0 (1.16)
08 leg0 08 lezgno
oW (&,7) _oW(s7) 0 (1.17)
o¢* £=6,-0 o¢? §=6,+0
(1+ 0, ijmfr) - (14. 0. ij%{f) —
or) 08 |, or) o& |, . (1.18)
—kW (&, ~0,7)+c, W& =0.7) (55 ~0.7)
T
with:
L, kL cle
§X_T, 0<<¢ <1 k, = 5 C, = 5 (1.19)

Equation (1.11) featured two dimensionless parameters, So and y:1, which
could trigger self-excitation of the system. This is why the system was termed
a ‘double self-excited system’.

2. SOLUTION OF THE PROBLEM

Given the discontinuity of the parameters within interval (0, 1), i.e. £ = &
the solution to equation (1.11) was sought in the following form:

W, (£, 7)=V,(£)e™ for 0s&<¢
W&, 7)= :
&) {wz(é,r)= Vi(&)+V,(E-& )™ for & <<t
where function W;(¢&) satisfied this equation
(L+ip0 W] (£)+ SoW[ (£)+ 7W[(£)+ iy, p - 7*p? W, (£)=0, =12 (2.2)

For the first interval (0 < ¢ < &), the application of the Laplace
transformation expressed as

V()= LV, (&)= [V, (£)de (23)

2.1)
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to equation (2.2), the solution in the image domain had the form of
\71(3)(54 +h,s? +b13+b0)=vl(0)(s2 +bzs+bl)+ 24)
+V/(0)(s? +1,)+V,(0)s +V,"(0) '

with V,(0),,(0),V,"(0),V,"(0)as the original values of function V,(£) and its
derivatives, whereas the substituted coefficients b; described these dependences

H 4 R2
b():l?/zp-ﬂ' p , b= 7_/1 . b, = S_o , (2.5)
1+ipé. 1+ipé, 1+ipé.

Further on, the use of the denotations
Uio :Vl(o): 0, vy :Vl!(o)' U :Vl”(o): 0, vy :Vlm(o) (2.6)
and equation (2.4) in a form convenient for further operations was
2 2
\7l(s)= i S +E)zs+b1 O+ = S 2+b2
s" +b,s“+bs+b, s"+b,s*+bs+b,
+ > v, + 1
s*+b,s’+bs+b, ° s*+b,s*+bs+h,

vy, +
(2.7)

U3

The inverse Laplace transform applied to equation (2.7), and given
boundary conditions (2.6), the result was

Vl(%g): lKH(f)‘F sz(g)JUn + K(f)um (2.8)

The theorem of original differentiation for the second interval, i.e.

(& = &< 1) could not be applied to the function present in that interval with an

offset of Va(& — &), since the function was differentiable at point & = &. This

restriction was correct if derivative V)(£-¢&,) was determined in classical
analytical terms, like in [10]. However, with the following assumption

Vi(§-&)=0¢-¢) (29)
the rule could be applied, because
LIv;(&-&)l=sL V(e -5 l-Va(-6) (2.10)

Detailed contemplations of the Laplace transformation into the function
with an offset can be found in [10], which is dedicated fully to the practical
applications of the Laplace transformation.

Having reached the foregoing notes, for the second interval (see eqg. (2.1)),
equation (2.2) in the original space and given the used denotations (2.5) was

V(E)+V,(E =€)+ b, M (E)+Vy (E- & ]+

b M)+ V(& - & )]+ by W (&) + W (e - £ )]=0 (211)
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which, following the Laplace transformation, i.e. the transition from the original
space to the image space, led to this expression

L[V, =& )s* +b,57 +bys +by )= [\/(5)](34+sz2 sy )+
+(s° + b5+, V,(0)+ (52 +10, Wy(0)+ sV, +v'"(o) (2.12)
+(s*+b s+bl)\/ (s +b )\/ )+sVy(=& )+ (=&,

With the conventional denotations from (2.6), i.e. the first subscript
denoted the integration range and the second subscript denoted the order of the
derivative, the following was obtained in the second interval:

Uy =V, (_ S ), Uy :V£ (_ S )’ Uz, :Vzn(_ S )’ Uy3 :Vzm(_ étx) (2.13)

The inverse Laplace transform on equation (2.12) with the boundary
conditions of (2.6) and (2.13), and with the necessary transformations, defined
the sought displacement function V,(£-¢&,)

V,(£-¢&)= [KW(SZ)*‘ sz'(§)+b1K(‘§)]Uzo + [K”(%t)+b2K(§_§x )]Uzl +
+ K'(‘f)uzz + K(f)uza

The unknown coefficients vij present in equations (2.8) and (2.14) were
determined with the geometric boundary conditions of (1.15) and (1.16), and the
static boundary conditions of (1.14), (1.17), and (1.18), which assumed the
following form when substituted to (2.1):

(2.14)

V) (1)=V;"(1)=0 (2.15)

Vi(£)=V, (&) (2.16)
V/(£)=v(&) (2.17)
V/(£)=V5'(&) (2.18)

@+ Gip)V(E) -V, €)=k, +cipi(s,) (2.19)

Function K(&) in equations (2.8) and (2.14) was determined in the
following form

Kg)=2c, expls, &) (2.20)

with s; being the radicals of the characteristic equation (see (2.4))
d(s)=s*+hs* +bs+h =0 (2.21)
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whereas coefficients c¢; were expressed as

c = 1 1
i~ e )\ A3 '
d(sj) 4s] +2b,s; +Dy
With the originals of function V;(&) known as described with equations

(2.8) and (2.14), the boundary conditions of (2.15) to (2.19) provided the
following matrix system of uniform equations

j=12,34. (2.22)

(2.23)

(\GIX\GI)'(;lx)l) (6x1)
with vector v having these components
v :[011 Uiz Uy Uy Uy 023] (2.24)
whereas the matrix elements w were
wy, = K™ @Q)+b,K"@1), w,=K"@), wy=KYQ)+bK"@1)+b,K"(1),
wy, = KM (@) +b,K"(1), w=K"@1), w,=K"()
Wy, = K Q) +b,K"(L), Wy, =K™(1), W,,=KY(@)+bK"(1)+b,K"™ (1),
=KV Q) +b,K"(L), Wy =K™ (1), w,e=K"(1)

—O W;, =0, W33:_Km(§) bK(é) sz (gx),
W34_ K”( ) ( ) Wsg = — K( )1 W36=_K(§)
Wy =0, Wi, =0, w,=- K(IV)( ) ( ) b K”(ég)

=K (6 )BT, g = K&, Wi =—K(E.), (2.25)

W51:0' W52:0, W3 = KN)(SK )_blK”(égx)_szm(fx)’

4:_K(|V)(§x)_b K”( ) == m(éx)' Wssz_K” fx)x

Wy, =(1+i0, p)K (&) +b K’”( -k, +ie, p)[K(E,)+bK (£, )},
~b,K(£,)-K"(&,)

W, = (L+10, p)K"(£,)~ (k. +ic, p)K(£,)-K(&, )
:_K,”(éx)_blK(éx)_bZK'(fx)' W64=_K”(§x)+b2K(§x):

Wesz_K'(fx) WGGZ_K(é:x)

The solution which presented the steady-state vibrations of the system
could be expressed as follows:

_pe/Wi&ir)=a(g)eos(pr+p(¢)) d 0<g<g
Wie)-Rel T ) b

=

(2.26)
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with:
""J(sg)=\/(ReW,-(é))zJr(lmwj(g))2 o
tgg, (5)2% =4 (2.27)

The frequency equation expressed from the system of uniform equations in
(2.23), i.e.
A=det(w)=0 (2.28)

was applied to analyse the stability and vibrations of the investigated system.
3. NUMERICAL ANALYSIS OF SELF-EXCITED VIBRATIONS

The trend of the critical parameters of self-excited vibrations was
investigated in relation to the plate overhang dimensionless parameter value of
& = L«/L and a number of other data items. The frequency equation of (2.28)
was applied to analyse the stability and vibrations of the investigated system. In
a general case, vibrational frequency p was assumed to be complex:

p=qg-ie, (3.2)
this facilitated the following general expression:
A=ReA+ilmA=0, (3.2)

For the given values of So, y1, 72, O, ki, Cr, &, the frequency equations of
(3.2) facilitated the determination of the system’s natural vibration frequency
g=0nhnh =1, 2, ... and the decay decrements ¢ = &, < 0 (for attenuated
vibrations) or the decrements of increase ¢ = &, > 0 (for unstable self-excited
vibrations). The frequency vibrations also facilitated the determination of the
critical parameters of self-excited vibrations of the system, Sox, Qkr, at ¢ = 0 and
the given y1, y2, O, ki, Cr, &, OF yir, Qur @t € = 0 and the assumed So, 72, O, ki, Cr,
&, With Sekr and yue were the smallest values of So and 91 that occurred at the
vibration stability limit, whereas gk was the vibration frequency for which ¢ = 0
at So = Sokr OF y1 = V1.

If g = ¢ = 0, then for the assumed values of all other parameters in the
frequency equations, the divergent stability loss limits could be determined as
the values of Sk and piir.
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3.1. Determination of the critical parameters of the plate on a fixed
hinged support with a small overhang (&= 0.9)

The critical parameters were determined for the investigated case by testing
the trends of the solutions to equation (2.28) in the vicinity of the few first
natural vibration frequencies of the system, and at these frequencies, self-
excited vibrations would usually occur. Solving equation (2.28) divided into the
real part and the imaginary part (3.2) for harmonic vibrations (¢ = 0) and non-
stationary vibrations (g # 0) in dependence of So, y1, 8 @ and ki, c, plane y1 —q
featured the plots of roots of equations (3.2), the examples of which, given
¢ =0, are shown in Fig. 3.1 at ¢ = 0 and in Fig. 3.2 at ¢ = 2. The parameter input
o was described with the following dependence:

o=S,/7° 3.3)

5=0.1

1000} | %0

J
kr =1e+08 ReA=0, ':'x=1 0
X e IMA=0, £=1.0

O Flutter upper limit |
@ Flutter lower limit

ReA=0, [;x=0,9
- ImA=0, £ =0.9

O Flutter upper limit
m  Flutter lower limit
ReA=0, F,X=O 8

ImA=0, £ =0.8

i o=0

500

Y1
o

Flutter upper limit
Flutter lower limit
Div. vib. lim.

-ReA=0, £ =0.7
ImA=0, £=0.7

|
| <>

-500( |

Flutter upper limit
Flutter lower limit
Div. wib. lim.

AwvV

-1000 -

Fig. 3.1. Plots ReA = 0 and ImA =0 at ¢ = 0 and & = var

The plots in the foregoing figures were charted for dimensionless
parameters of flow ¢ = 0.1, @ = 0, and support k. = 1-108, ¢, = 0, which was
infinitely rigid in this case. The characteristic points of intersection of plots
ReA = 0 and ImA = 0 are detailed in the key to the figures. The essence of the
figures was to demonstrate the effect of the plate overhang, i.e. & < 1, on the
critical parameters of the system in both directions of flow shown in Fig. 1.1.
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A preliminary analysis of the figures revealed that plots ReA = 0 became
desymmetrised, whereas at higher values of the overhang, plot ReA = 0
assumed a more complex form on plane y: - g , with e.g. the lower divergence
limit gone with the negative sense of flow, i.e. y1 <0.

1000

5=0.1
soo}» 6.=0

ik =1e+08
eooL c.=0

400+
|
200

ReA=0, £ =1.0
e IMA=0, € =1.0
X
O Flutter upper limit
@  Flutter lower limit
%z Div. upper limit
% Div. lower limit

ReA=0, §X=0.9
e IMA=0, £ =0.9

O Flutter upper limit
m  Flutter lower limit
&  Div. upper limit
¢  Div. lower limit
ReA=0, §x=0.8

e IMA=0, £ =0.8
X

= oF

-200F
Flutter upper limit
Flutter lower limit
Div. upper limit
ReA=0, £ =0.7
ImA=0, £ =0.7
[> Flutter upper limit
s p Flutter lower limit
5 4 Div. upper limit

<4 p D

-400+

-600 -

-800

-1000

Fig. 3.2. PlotsReA=0and ImA=0ats=2and 6 =0

The critical parameters of self-excited vibrations and divergence plotted in Figs.
3.1 and 3.2 are listed in Table 3.1.

Table 3.1.
Flutter limit Divergence limit
o | & upper lower upper lower
Okr Y1kr Qkr Yikr YVikr Yikr

1.0 | 3.24449 347.459 3.29449 -347.459 | - -

0.9 | 4.22789 500.692 3.65988 -435699 | - -

0.8 | 5.52657 753.285 6.29635 -892.323 | - -182.993
0.7 | 7.16682 1136.14 7.46485 -1166.61 | = ----- -69.3533
1.0 | 2.08332 191.732 2.08332 -1191.73 105.641 | -105.641
5 0.9 | 3.04352 317.548 2.60256 -278.20 114.673 | -133.958

0.8 | 4.38985 | 540.609 | 5.42368 -716.327 75.536

0.7 | 6.06551 889.009 6.47705 -937.411 -3.557 -
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The following figure, 3.3, illustrates the calculation results for the stable
and unstable vibration areas and the flutter and divergence limits in plane q — y:.
The calculations were completed for the plate with an overhang of 0.1L, i.e.,
following the notation from Fig. 1.1, the assumptions were & = 0.9, k. = 108,
¢ = 0. Other parameters not denoted in the plane of the figure were: § = 0.1,
6, =0.

A reference of the resulting solution to the universal results in [9] from the
testing of a plate without any overhang, the foremost conclusion was that no
discernible differences in quality were found. The divergence limit plots formed
a closed oval form, as before, which was slightly desymmetrised against axis
y1 = 0, not unlike the flutter upper and lower limits. For unstable self-excited
vibrations, the calculations were completed at ¢ > 0, and the area of unstable
self-excited vibrations was thus determined.

Further on, the forms of vibration at the stability limits were determined at
the characteristic points (1) and (2) shown in Fig. 3.3 for both directions of flow
(shown with the arrow on the same figure) and for dimensionless parameter
7= qt/2= (Figs. 3.4 and 3.5).

600 — —_—

= I —
| ==== Low. flut. lim Uu >a, ¢ e=0

= r PES . ==

=== Upp. flut. lim Uo >a, > e=0

Unstable vibrations

—— Limit div. 1,2

| Low. fiut. lim.U, > @, «; £=0.5
400+ a

[ Upp. flut. lim. UD >, £=0.5

200}

Stable vibrations =

/,/(5) X: 4,947
Div. lim. 2 < >‘\ Ll

I/
,,,,, X:42
200 I s o bl
@ _ -
- |
400’ Unstable vibrations J
600 — I i | S | P . I J
0.5 1 1.5 2 25 3 35 4 45 5 55

Fig. 3.3. Plate stability limits on plane o — 1
(£=09k =10°c, =0,6=0.1,6, =0)
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08

06

04

0.2

‘max

WE, ) W,

-0.2

Point: (1) q=3.3667e+00 y, = 3.6420e+02

8=0.1 =05
%9 -~ 1=0.1667 |
) 3333(
k =1e+08 —
¢ =0
©=1.489
L g =09
Uy>a;

Fig. 3.4. Forms of vibration for the plate with a single moving

08

0.6

04

0.2

‘max

Wi, 1) /w

node (=)

Point: (2) q=28992e+00 y, =-3.1950e+02

T

0.1 0.2

03 04 05 06

07

08 09 1

Fig. 3.5. Forms of vibration for the plate with a single moving

node (<)
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3.2. Determination of the critical parameters of the plate on a fixed
hinged support with a moderate overhang (&= 0.8)

The next step of the numerical tests was to determine the effect of the plate
overhang size while assuming infinite rigidity of the plate support, k. = 108, and
two plate overhang values, & = 0.8 and & = 0.9.

The solutions are illustrated in Fig. 3.6, which demonstrates their
significant change from the solution to & = 0.8. At higher plate overhang
values, the divergence limit ceased to form a closed, oval-like curve and became
an open curve with the origin on axis ¢ = 0. The characteristic points along the
curve are the tangential points of the flutter limit plots with a positive sense of
flow (o = 5.683; y1 = 197.2) and a negative sense of flow (¢ = 8.2; y1 = -451.4),
and two extreme (and reflexive) points with the values (o = 6.414; y1 = 72.49)
and (o = 4.094; y1 = -269.4), respectively. The same figure shows marked areas
of stable and unstable vibrations, with a selection of 16 characteristic points for
which the forms of vibration and the forms of divergent stability loss were
determined.

~--- Flutter im... Uy >a «; £ =0.9
. == Flutter lim.: Uy >a, - &
(1) Unstable vibrations — Dw.im: 1.2,y

600} x 0 Flutter fim.: U, >a,
Flutter lim.: U, >a,

Div.lim:  1,2,3,Uy>ay £=08

X0 e Y- 2604 .
400} Y4387 - (10) ). (12)  (13(15) ¥ Sera
B - oW
(14) (5)

600 (16)

Stable vibrations .

Unstable vibrations
(3)

1000 L ¥ #%23
0

Fig. 3.6. Plate stability limits on plane o — 1
(62086209, =10°c, =0,6=0.1,6, =0)

The charts for points (2) and (4) aligned with the flutter limit are shown in
Figs. 3.7 and 3.8, respectively. The parameters for which these plots were
charted are shown in the planes of the same figures and in the keys; the
important notes resulting from the trends of the plots are listed below the
respective figures.
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Point:(2)  Q=25438e+00 v, =3.0185e+02
1 T T T =

_— P [— =00 7
# - =05
08} 0,0 memem 120.1667 |-

06~ ©=0
04} &=

02+

‘max

W(E, ) Iw
o

.02}
0.4
06—

08 Nogeed]

Fig. 3.7. Form of vibration for the plate with a single moving node
(point (2))

Point: (4) q=34110e+00 v, =

-4.9397e+02

—1=0.0

- 1=0.5 |
====== 1=0.1667
~1=0.3333

'max

9Iw

W(E

0 ~ o 02 03 04 05 06 07 08 09 1

Fig. 3.8. Form of vibration for the plate with two nodes (point (4))

The following figure, 3.9, shows a summary of the trends of divergent
stability loss for a selection of characteristic points, (6) to (16), which were
positioned in detail in Fig. 3.6. The key and description of the figure detail the
parameters assumed for their numerical calculations.
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The trends of the plots, and more precisely the number of corresponding
node points, determined the type of divergent stability loss in the cases
investigated from divergence 1 to divergence 3 (see details in the key to
Fig. 3.9).
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Fig. 3.9. Forms of divergent stability loss of the plate (points (6) to
(16))

3.3. Determination of the critical parameters of the plate on
a moving flexible hinged support with a moderate overhang

(fx: 08)

Traditionally, determination of the critical parameters comprised charting
the plots of ReA = 0 on ImA = 0 plane g — y: for the determined parameters of
the systems and the variable dimensionless value of follower force o with the
determination of the zero points of the characteristic determinant, A. In
compliance with the procedure set forth herein, areas of stable and unstable
vibrations were plotted for infinite and finite rigidity of support, by sequentially
assuming kr = 108 and k, = 10%. The results are illustrated in Fig. 3.10.

An analysis of the solution confirmed a known fact from [9] by which the
reduction of the support rigidity increased the external area of unstable
vibrations. A novel phenomenon was the emergence of an internal area of
unstable vibrations (see broken plot lines) in Fig. 3.10. The trends of the flutter
limits were determined for the positive value of ¢ = 0.3 of complex frequency g.
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Fig. 3.10. Areas of plate stability on the flexible hinged support with
a moderate overhang, with the points shown at which the form of

vibration trends were determined
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Fig. 3.11. Form of vibration for the plate with a stationary
internal node (point (2))

The characteristic points (2), (3) and (8) shown in Fig. 3.10 corresponded
to the following forms of vibration.
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Fig. 3.12. Form of vibration for the plate with two nodes: one
internal and nearly stationary, and one external and evidently
moving (point (3))
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Fig. 3.13. Form of vibrations for the plate with one internal
and evidently moving node (point (8))

A common characteristic of all forms of vibration shown so far was the
displacement on the resilient support and the significant effect of the direction
of flow on the form of deformation shown herein.
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3.4. Determination of the critical parameters of the plate on
a moving flexible hinged support with a moderate overhang
(& = 0.8) at a change of material attenuation, @r, and
aerodynamic attenuation, &

The first case considered included the effect of material attenuation ©: on
the locations of stable and unstable vibration areas (Fig. 3.14). An analysis of
the effect suggested that material attenuation increased the unstable vibration
areas while the character of the solution was retained. The calculation input
parameters and a detailed description thereof is shown in the figure plane and
key. The second case considered concerned the effect of aerodynamic
attenuation ¢ on the locations of stable and unstable vibration areas (Fig. 3.15).
Here, the unstable vibration areas also grew while the character of the solution
was retained while aerodynamic attenuation grew. The calculation input
parameters and a detailed description thereof is shown in the figure plane and
key.

A general note should be made that both attenuation types for the plate
with no overhang (see [9]) and the plate with the overhang led to the same
quantitative conclusions. With the moderate and higher overhangs, i.e. & < 0.8,
the quantitative nature of the solution was quite different. Two new phenomena
were revealed; first, the internal separation of the divergent stability loss limit
oval into a single plot line with the origin at axis ¢ = 0; second, the emergence
of a stable internal area of unstable vibrations.
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>
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Fig. 3.14. Areas of stable and unstable vibration with the change in
material attenuation &,
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Fig. 3.15. Areas of stable and unstable vibration with the change in
aerodynamic attenuation ¢

4. CONCLUSION FOR THE TEST RESULTS

The analysis completed as contemplated herein determined the
characteristics of the vibrations and stability of a plate with a finite overhang
exposed to a supersonic flow and investigated as a double self-excited system,
in which two independent physical factors occurred that triggered the self-
excitation phenomenon: the supersonic flow and the compressive follower force
applied in the plate plane. Two directions of supersonic flow were considered
with an assumption that one of the plate edges was on a hinged support, while
the other featured a resilient support which assumed different positions along
the plate length, L.

The limits of the system’s vibration stability areas were analysed in plane
(o, y1), with y1 being a dimensionless parameter determining the dynamic
pressure of the gas flow acting on the vibrating panel, and o being the
dimensionless compressive follower force acting within the plate plane. The
analysis suggested that within that plane, without overhang L - Ly = 0 or with
a low overhang, L - Lx = 0.1, an oval occurred, which defined the divergence
limits of the first two natural vibrations of the system in both directions of flow,
and the plot lines connected to the oval and describing the limits of self-excited
vibration areas at y1 > 0 and y, < 0, i.e. for both directions of flow. The solutions
obtained for Ly = 0.9 (the plate with a minimum overhang) and for Ly = 1 (the
plate with no overhang) feature very little qualitative and qualitative
differences.
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In [9] features a series of numerical calculations for Lx = 1 were carried out.
The results demonstrated how the said ovals and self-excited vibration limits
changed in relation to the plate support method and other parameters of the
problem, and thus, they do not require a detailed discussion. The focus hereof
included the numerical test results with Lx < 0.8. In this case, Lx = 0.8, it was
found that: (1) the inner oval was divided, with its upper part joining the plot
axis o = 0, whereas its lower part, when at high values of &, which were ¢ = 9
here, became tangent with the lower plot of the self-excited vibration area limit;
(1) two inner areas of unstable vibrations emerged, with the upper one stable
and the lower one symmetrical to axis y1 = 0 and unstable (and only
theoretically feasible), and with @; # 0, it would not exist. Aside from the
rigidity of the right-hand resilient support, a major contributor to the locations
of the stability limits of the system was the values of coefficients
of aerodynamic attenuation o, material attenuation @, and the attenuation
within the resilient support c.. It was determined that an increase in
aerodynamic attenuation (Fig. 3.15) stabilised the system, while material
attenuation (Fig. 3.14) and the attenuation within the resilient support
contributed to instability.
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Drgania i statecznos¢ plyty w oplywie naddzwickowym
obciazonej sila Sledzacq z przegubowa podporg zewnetrzng
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Streszczenie. Rozpatrzono drgania i stateczno$¢ plyty o skoniczonej dtugoséci w ptaskim
przeptywie naddzwickowym przy zalozeniu, ze jedna z krawedzi plyty jest przegubowo
podparta, a druga jest swobodna. W wewngtrznym punkcie ptyty znajduje si¢ podpora
o wlhasno$ciach sprezysto-thumigcych. W plaszczyznie ptyty dziata sita $Sciskajaca, ktora
jest sitg Sledzaca i zachowuje kierunek styczny do odksztalconej powierzchni ptyty.
Powstaje w ten sposob uktad powierzchniowy, w ktérym wystepuja dwa niezalezne
czynniki fizyczne bedace przyczyng jego samowzbudnosci. Jest to wiec uktad, ktory
mozna nazwa¢ ukladem podwdjnie samowzbudnym. Rozwigzanie réwnan ruchu
otrzymano za pomocg przeksztatcenia Laplace’a. W dalszej czgsci pracy
przeprowadzono numeryczng analiz¢ warunkéw wystepOowania samowzbudnych drgan
w zaleznos$ci od potozenia podpory wewnetrznej (tzw. przewieszenia plyty), thumienia
w materiale plyty oraz innych jej parametrow, w tym takze parametrow sprezysto-
thumigcych podpory. Dla przyjetych parametrow zbadano wyniki obliczen granic
obszarow stateczno$ci i niestatecznosci rozpatrywanego uktadu na ptaszczyznie y1, o.
1 wyznaczono postacie drgan dla szeregu typowych przypadkow.

Stowa kluczowe: mechanika, aerosprezystos¢, model matematyczny



