PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stabilizacja pęczniejącej ziemi w celu wykonywania budowli z ziemi

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Stabilization of the swelling soil for earth construction
Języki publikacji
PL EN
Abstrakty
PL
Przeprowadzone badania dotyczą metod odlewania budowli z ziemi, jako część programu badawczego poświęconego budowlom ziemnym. Badano wpływ dwóch inhibitorów pęcznienia ziemi zawierającej glinę: poli(tlenku etylenu) [PTE] i karboksymetylocelulozę [KMC], aby była możliwa jej stabilizacja cementem CEM I 42,5N. Ziemię zawierającą 14% gliny, kwarc i kalcyt, stabilizowano 10% dodatkiem cementu. Dodawano równocześnie 3% plastyfikatora polikarboksylanowego w stosunku do masy cementu, aby ziemia uzyskała zdolność do płynięcia. Uzyskane wyniki wykazały, że PTE i KMC – inhibitory pęcznienia gliny, zmniejszyły to pęcznienie o około 30% i 40%, przy czym maksymalne pęcznienie odpowiadało po 90 dniach odpowiednio 24% i 46% wytrzymałości na ściskanie. Omówiono interakcję gliny z cementem i inhibitorami pęcznienia. Znalezione zależności pozwoliły na korzystne zastosowanie tych materiałów do wytwarzania elementów budowlanych, zastosowanych we wznoszeniu budynków na obszarach pustynnych.
EN
This study is concerned with the method of cast earth as part of an investigation series on earth construction. The effect of two clay swelling inhibitors; polyethylene glycol [PEG] and of carboxymethyl cellulose [CMC] on the swelling of a clay-bearing soil are studied to enable the stabilization of the soil with CEM I 42.5 N. The soil composed of 14% clay, quartz, and calcite, is stabilized with 10% cement. 3% polycarboxylate superplasticizer is added relative to the mass of the cement, to gain the soil pourable properties. The results show that the PEG and CMC clay-swelling inhibitors reduce the expansion of the soil by ~30 and ~40% and lead to a maximum increase of 24 and 46% in the 90-day compressive strength respectively. The interactions between clay, cement, and swelling inhibitors are discussed. The findings allow advantageous applications for producing building units for construction purposes in desert areas.
Czasopismo
Rocznik
Strony
198--210
Opis fizyczny
Bibliogr. 45 poz., il., tab.
Twórcy
  • Faculty of Science, Helwan University, Cairo, Egypt
  • G&W Science and Engineering, Cairo, Egypt
  • Faculty of Science, Helwan University, Cairo, Egypt
  • Faculty of Engineering, Shoubra - Banha University, Cairo, Egypt
Bibliografia
  • 1. K. A. Heathcote, Durability of Earthwall buildings, Constr. Build. Mater. 9 (3), 185-189 (1995).
  • 2. G. Minke, Earth Construction Handbook. WIT Press, Southampton, 2000, 206-214.
  • 3. L. Keefe. Earth Building. Taylor & Francis Group, New York. 2005.
  • 4. M. C. Betts and T. A. H. Miller, “Farmers’ Bulletin No. 1500: Rammed Earth Walls for Buildings”, Washington, D.C.: U.S. Department of Agriculture, 1937.
  • 5. A. F. Merrill, The Rammed-Earth House, New York: Harper & Brothers Publishers, 1947.
  • 6. P. Walker, R. Keable, J. Martin, V. Maniatidis, Rammed Earth: design and construction guidelines, Bracknell, United Kingdom: BRE Bookshop, 2005.
  • 7. B. Isik, Experimental study with the gypsum stabilized earthen wall material: Alker, for sustainable habitat, Science Conference: Sana’a: Yemeni Scientific Research Foundation; 2001.
  • 8. H. Lowenhaupt, A revolutionary innovation in traditional earth construction. http://www.greenhomebuilding.com/cast_earth.htm.
  • 9. R. Vroomen, Gypsum stabilized earth – Research on the properties of cast gypsum stabilized earth and its suitability for low cost housing construction in developing countries”. Netherlands: Eindhoven University of Technology, 2007.
  • 10. G&W Science and Engineering, “Cast Earth”. www.gw-egy.com Report presented to GIZ. Cairo. 2012.
  • 11. A. H. E. Hassan, Studies on some factories affecting the soil stabilization using the methodology of cast earth” M.Sc. Thesis, Faculty of Science, Helwan University, 2016.
  • 12. H. Y. Ghorab, A. S. Meawad, A. H. Hassan, Effect of cement kiln bypass dust on the performance of cast earth, Cem. Int., 5, 52-57 (2016).
  • 13. H. Y. Ghorab, A.S. Meawad, M. Yildirim, A. H. E. Hassan, Progress research in earth construction: Pourable earth with burned clays and solid wastes. African J. Sci. Techn. Innov. Develop. 6/1/2018 https://doi.org/10.1080/20421338.2018. 1479141
  • 14. A. H. E. Hassan, Studies on the properties and behavior of cast earth. Ph. D. Thesis, Faculty of Science, Helwan University, ongoing.
  • 15. The Egyptian code for building with stabilized earth-1st Part: Building with compressed stabilized earth blocks. 2016 Housing and Building Research Center, Cairo Egypt http://www.hbrc.edu.eg
  • 16. R. H. Bogue, Calculation of the compounds in Portland cement. Industrial and Engineering Chemistry Analytical Edition, 1 (4), 192-197 (1929).
  • 17. ASTM C 837 - 09: Standard test method for methylene blue index of clay, ASTM International, West Conshohocken, PA, 2019.
  • 18. IS 2720 - 40(1977): Methods of test for soils, pat 40: determination of free swell index of soils. CED 43: Soil and foundation engineering.
  • 19. ASTM C230 / C230M-14: Standard specification for flow table for use in tests of hydraulic cement, ASTM International, West Conshohocken, PA, 2014.
  • 20. ASTM C1437 - 15: Standard test method for flow of hydraulic cement mortar, ASTM International, West Conshohocken, PA, 2015.
  • 21. ASTM C 490-93a: Standard test method for use of apparatus for determination of length change of hardened cement paste, mortar, and concrete, 2000.
  • 22. ASTM C109 / C109M-13: Standard Test Method for Compressive Strength of Hydraulic Cement Mortars, ASTM International, West Conshohocken, PA, 2014.
  • 23. G. Brown, The X-ray Identification and Crystal Structures of Clay Minerals, Mineralogical Society, London, 1961.
  • 24. B. Velde, Origin and Mineralogy of Clays: Clay and the Environment, in: B. Velde (Ed.), Springer, 1995.
  • 25. D. Manning, Handbook of Clay Science (Developments in Clay Science, 1, in: F. Bergaya, B.K.G. Theng, G. Lagaly (Eds.), Elsevier’s Science & Technology, 2007.
  • 26. J. F. Muñoz, M. I. Tejedor, M. A. Anderson, S. M. Cramer, Expanded study on the effects of aggregate coating and films on concrete performance. Wisconsin Highway Research Program # 0092-04-12. Department of Civil and Environmental Engineering, University of Wisconsin-Madison.2007.
  • 27. M. A. Fam, J. C. Santamarina, Study of clay-cement slurries with mechanical and electromagnetic waves,” Journal of Geotechnical Engineering-Asce, 122 (5), 365-373 (1996).
  • 28. D. F. Noble, Reactions and strength development in Portland cement-clay mixtures,” National Research Council - Highway Research Board - Research Record, 198, 39-56 (1967).
  • 29. D. C. Pike, Methodologies for Assessing the Variability of Fines in Sands Used for Concretes and Mortars,” PhD Thesis. University of Reading, 1992.
  • 30. S. Caliskan, B. L. Karihaloo, B. I. G. Barr, Study of rock-mortar interfaces. Part 1: surface roughness of rock aggregates and microstructural characteristics of interface, Mag. Concr. Res. 54 (6), 449-461 (2002).
  • 31. E. C. Gaucher, P. Blanc, Cement/clay interactions - A review: Experiments, natural analogues, and modeling. Waste Manag. 26, 776-788 (2006).
  • 32. H. Takase: Discussion on PA model development for bentonite barriers affected by chemical interaction with concrete: Do we have enough evidence to support bentonite stability? Proceedings of International Workshop on Bentonite-Cement Interaction in Repository Environments - Tokyo - Japan - 14-16/04/2004.
  • 33. R. Saadeldin, S. Siddiqua, Geotechnical characterization of a clay-cement mix, Bull. Eng. Geol. Environ. 72, 601-608 (2013).
  • 34. S. Liu, X. Mo, C. Zhang, D. Sun, H. Mu, Swelling Inhibition by Polyglycols in Montmorillonite Dispersions, J. Dispersion Sci. Techn. 25 (1), 63-66 (2006).
  • 35. L.M. Zhang, Inhibitive properties of amphoteric, water-soluble cellulosic polymers on bentonite swelling. Colloid Polym. Sci, 277, 282-284 (1999).
  • 36. J. Herzberger, K. Niederer, H. Pohlit, J. Seiwert, M. Worm, F. R. Wurm, and H. Frey: Polymerization of Ethylene Oxide, Propylene Oxide, and Other Alkylene Oxides: Synthesis, Novel Polymer Architectures, and Bioconjugation, Chem. Rev. 116, 2170-2243 (2016).
  • 37. J. Plank, Influence of clay minerals on the action of PCE superplasticizers – description of the phenomenon and possible Solutions, Cem. Int. 5 (14), 58 - 61 (2016).
  • 38. R. A. Akbour, P. Boustingorry, F. Leroux, F. Leising. and C. T. Guého: Adsorption of PolyCarboxylate Poly(ethylene glycol) (PCP) esters (Na+, Mg2+ and Ca2+) and PCP molecular structure on Montmorillonite (Mmt): Effect of exchangeable cations, J. Colloid Interf. Sci. 437, 227-234 (2015).
  • 39. S. Ng, J. Plank, Interaction mechanisms between Na montmorillonite clay and MPEG-based polycarboxylate superplasticizers, Cem. Concr. Res. 42, 847-854 (2012).
  • 40. B. M. A. Brito, P. M. Bastos, A. J. A. Gama, J. M. Cartaxo, G. A. Neves, H. C. Ferreira, Effect of carboxymethyl cellulose on the rheological and filtration properties of bentonite clay samples determined by experimental planning and statistical analysis, Cerâmica, 64, 254-265 (2018).
  • 41. D. Bülichen, Wirkmechanismus verschiedener Celluloseether als Wasserretentionsmittel in der Tiefbohrzementierung und in Trockenmörtelsystemen. Doktors der Naturwissenschaften (Dr. rer. nat.). Faculty of chemistry Technical University Munich 2013.
  • 42. K. N. Farooque, Z. Yeasmin, M. E. Halim, A. J. Mahmood, and M. Y. A. Mollah, Effect of Carboxymethyl Cellulose on the Properties of Ordinary Portland Cement, Bangladesh J. Sci. Ind. Res. 45 (1), 1-8 (2010).
  • 43. P.C. Mishra, V.K. Singh, K.K. Narang, N.K. Singh, Effect of carboxymethyl-cellulose on the properties of cement, Materials and Engineering A357, 13-19 (2003).
  • 44. L. Lei, and J. Plank, A concept for a polycarboxylate superplasticizer possessing enhanced clay tolerance, Cem. Concr. Res. 42, 1299-1306 (2012).
  • 45. X. Liu, J. Guan, G. Lai, Y. Zheng, Z. Wanga, S. Cuia, M. Lana, and H. Lia, Novel designs of polycarboxylate superplasticizers for improving resistance in clay-contaminated concrete J. Ind. Eng. Chem. 55, 80-90 (2017).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15dff32f-a7bb-483c-b761-ecbda48a84bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.