PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative thermodynamic and economic analyses of combined heat and power plants with SMR and HTGR reactors

Identyfikatory
Warianty tytułu
PL
Porównawcza analiza termodynamiczna i ekonomiczna elektrociepłowni z reaktorami SMR i HTGR
Języki publikacji
EN
Abstrakty
EN
This paper presents a comparative thermodynamic and economic analysis of combined heat and power (CHP) plants utilizing Small Modular Reactors (SMRs) and High Temperature Gas-cooled Reactors (HTGRs) designed for use in largescale and distributed power generation. The study focuses on the differences between these two reactor types in CHP applications, highlighting their respective efficiencies and economic viabilities. The analysis reveals that CHP plants with HTGR reactors demonstrate significantly higher thermodynamic and economic efficiency compared to those with SMR reactors. This superiority is attributed to three main factors: the higher electrical efficiency of HTGR-based plants, lower investment costs for HTGR reactors, and consequently, more cost-effective electricity production in HTGR-based CHPs. The paper provides detailed thermodynamic calculations and economic assessments, including unit costs of heat production under various scenarios. It also discusses the advantages of locating these small-scale nuclear CHP plants closer to consumers, eliminating the need for extensive transmission networks. The findings suggest that HTGR-based CHP plants offer a more promising solution for future energy systems, including those operating in local power structures, particularly when considering gas-gas technology implementations that do not require water for operation, addressing a key limitation of both SMR and HTGR systems in conventional configurations.
PL
W artykule przedstawiono porównawczą analizę termodynamiczną i ekonomiczną elektrowni skojarzonych (CHP) wykorzystuj ących małe reaktory modułowe (SMR) i wysokotemperaturowe reaktory chłodzone gazem (HTGR) przeznaczone do stosowania W dużych i rozproszonych elektrowniach. Badanie koncentruje się na różnicach między tymi dwoma typami reaktorów W zastosowaniach CHP, podkreślając ich dpowiednie sprawności i opłacalność ekonomiczną. Analiza ujawnia, że elektrownie CHP z reaktorami HTGR wykazują znacznie wyższą sprawność termodynamiczną i ekonomiczną W porównaniu z reaktorami SMR. Ta wyższość przypisuje się trzem głównym czynnikom: wyższej sprawności elektrycznej elektrowni opartych na HTGR, niższym kosztom inwestycyjnym reaktorów HTGR, a w konsekwencji bardziej opłacalnej produkcji energii elektrycznej w elektrowniach CHP opartych na HTGR. W artykule przedstawiono szczegółowe obliczenia termodynamiczne i oceny ekonomiczne, W tym jednostkowe koszty produkcji ciepła w różnych scenariuszach. Omówiono w nim również zalety lokalizacji tych małych elektrowni jądrowych CHP bliżej odbiorców, co eliminuje potrzebę rozległych sieci przesyłowych. Wyniki sugeruj ą, że elektrownie CHP oparte na HTGR oferują bardziej obiecujące rozwiązanie dla przyszłych systemów energetycznych, W tym tych działających W lokalnych strukturach energetycznych, szczególnie przy rozważaniu wdrożeń technologii gaz-gaz, które nie wymagają wody do działania, rozwiązując kluczowe ograniczenie zarówno systemów SMR, jak i HTGR w konwencjonalnych konfigurac ach.
Wydawca
Czasopismo
Rocznik
Tom
Strony
86--99
Opis fizyczny
Bibliogr. 38 poz., fig.
Twórcy
  • Politechnika Opolska
  • Politechnika Opolska
  • Politechnika Opolska
  • Politechnika Opolska
Bibliografia
  • [1] Locatelli, G., et al. (2023). Small Modular Reactors: A comprehensive review of their potential and challenges. Progress in Nuclear Energy, 140,103941. -
  • [2] Kostyuk, A., et al (2024). Thermodynamic analysis and comparison of power cycles for small modular reactors. Energy, 215,119166.
  • [3] Shimoda, H., et al. (2022). Thermodynamic and economic analyses of HTGR cogeneration system performance at various operating conditions. Nuclear Engineering and Design, 386, 111568
  • [4] Harvego, E.A., et al. (2021). System evaluation and economic analysis of a HTGR powered high-temperature electrolysis hydrogen production plant. International Journal of Hydrogen Energy, 46(7), 4917-4935.
  • [5] Skrzypek, E.; Muszyński, D.; Skrzypek, M.; Darnowski, P.; Malesa, J.; Boettcher, A.; Dąbrowski, M.P. PreConceptual Design of the Research High-Temperature Gas-Cooled Reactor TeResa for Non-Electrical Applications. Energies 2022, 15, 2084. https://doi.org/10.3390/en15062084
  • [6] Paisiripas, D.; Cho, K.-w.; Park, S.-j. Integration of Small Modular Reactors with Renewable Energy for Carbon Neutrality: A Case Study of Phuket, Thailand. Energies 2024, 17, 5565. https://doi.org/ 10.3390/en17225565
  • [7] Pieńkowski, L. Competitiveness Strategies and Technical Innovations in Light-Water Small Modular Reactor Projects. Energies 2025, 18, 1268. https://doi.org/10.3390/en18051268
  • [8] Alonso, G. Economic Competitiveness of Small Modular Reactors in a Net Zero Policy. Energies 2025, 18, 922.
  • [9] https: //doi. org/ 10 3390/en18040922
  • [10] Paisiripas, D, Cho, K. -w., Park, S. -j. Integration of Small Modular Reactors with Renewable Energy for Carbon Neutrality: A Case Study of Phuket, Thailand. Energies 2024,17, 5565 https://doi.org/1 0.3390/en17225565
  • [11] Hanna, B.N.; Abou-Jaoude, A.; Guaita, N.; Talbot, P.; Lohse, C. Navigating Economies of Scale and Multiples for Nuclear-Powered Data Centers and Other Applications with High Service Availability Needs. Energies 2024, 17, 5073. https://doi.org/10.3390/en17205073
  • [12] Ren, C.; Lei, J.; Liu, J.; Hong, J.; Hu, H.; Fang, X.; Yi, C.; Peng, Z.; Yang, X.; Yu, T. Research on an Intelligent Fault Diagnosis Method for Small Modular Reactors. Energies 2024, 17, 4049 https://doi.org/10.3390/en17164049
  • [13] Arvanitidis, A.I.; Alamaniotis, M. Integrating an Ensemble Reward System into an Off-Policy Reinforcement Learning Algorithm for the Economic Dispatch of Small Modular Reactor-Based Energy Systems. Energies 2024, 17, 2056. https://doi.org/10.3390/en17092056
  • [14] Dabrowski M., Boettcher A., Brudek W., Malesa J., Muszyński D., Potempski S., Skrzypek E., Skrzypek M., Sierchuła J .,Concept of the polish high temperature gas-cooled reactor HTGR-POLA, Nuclear Engineering and Design,Volume 424,2024,113197, ISSN 0029-5493, https://doi.org/10.1016/j.nucengdes.2024.l13197
  • [15] Xiang P., Jiang K., Wang J., He Ch., Chen Sh., Jiang W., Evaluation of LCOH of conventional technology, energy storage coupled solar PV electrolysis, and HTGR in China,Applied Energy,Vol. 353, Part A, 2024, 122086, ISSN 0306—2619, https://doi.org/10.1016/j.apenergy.2023.122086.
  • [16] Zarębski, P.; Katarzyński, D. Small Modular Reactors (Sh/IRS) as a Solution for Renewable Energy Gaps: Spatial Analysis for Polish Strategy. Energies 2023, 16, 6491. https://doi.org/l0.3390/en16186491
  • [17] Chalkiadakis, N.; Stamatakis, E.; Varvayanni, M.; Stubos, A.; Tzamalis, G.; Tsoutsos, T. A New Path towards Sustainable Energy Transition: Techno-Economic Feasibility of a Complete Hybrid Small Modular Reactor/Hydrogen (SMR/H2) Energy System. Energies 2023, 16, 6257. https://doi.org/ 10.3390/en16176257
  • [18] Rahmanta, M.A.; Harto, A.W.; Agung, A.; Ridwan, MK. Niuclear Power Plant to Support Indonesia’s Net Zero Emissions: A Case Study of Small Modular Reactor Technology Selection Using Technology Readiness Level and Levelized Cost of Electricity Comparing Method. Energies 2023, 16, 3752. https://doi.org/10.3390/enl6093752
  • [19] Shobeiri, E.; Genco, F.; Hoornweg, D.; Tokuhiro, A. Small Modular Reactor Deployment and Obstacles to Be Overcome. Energies 2023, 16, 3468. https://doi.org/10.3390/en16083468
  • [20] Łukowicz, H.; Bartela, Ł.; Gładysz, P.; Qvist, S. Repowering a Coal Power Plant Steam Cycle Using Modular ' Light—Water Reactor Technology. Energies 2023, 16, 3083. https://doi.org/10.3390/en16073083
  • [21] Bartnik R., Hnydiuk-Stefan A., Buryn Z.: Analysis of Gas—Steam CHP Plants Without and with Heat Accumulator and HTGR Reactor, Energies, 2024, DOI:10.3390/en17225702
  • [22] Bartnik R., Hnydiuk-Stefan A., Buryn Z., Skomudek W.: Thermodynamic and economic analysis of hierarchical gas-gas nuclear power plants and CHPs with high-temperature reactors and helium as the circulating medium, Applied Thermal Engineering, 2024, DOI:10.l0l6/j.applthermaleng.2024.123426.
  • [23] Bartnik R., Buryn Z., Hnydiuk-Stefan A.: Comparative thermodynamic and economic analysis of a conventional gas-steam power plant with a modified gas-steam power plant, Energy Conversion and Management, 2023, https://doi.org/10.1016/].enconman.2023.117502
  • [24] Kunitomi, K., Yan, X., Tachibana, Y., Saikusa, A., & Shiozawa, S. (2021)., Design Study on Gas Turbine High Temperature Reactor (GTHTR3 00) [PDF]. Retrieved May 4, 2025, from https://repository.1ib.ncsu.edu/server/api/core/bitstreams/27cc6208-78fc-4ed3-a60l-b57a7b92bb2a/content
  • [25] Ohashi, H., Yan, X. L., & Mizuta, N. (2018), Review of helium turbomachinery, piping, valves and other technologies for power conversion and heat transport, (Gemini Plus Deliverable D3.8). JAEA. Retrieved May 4, 2025, from https: //gem1n1-1n1t1at1ve com/wp-content/uploads/2019/01/D3__8_Review__of_helium turbomachlnery _p1p1ng valves__and__other _technolog ies_for_power conversion__and__heat ___transportV1.pdf
  • [26] Yan, X. L. (2017, January 30—31),HTGR Brayton Cycle Technology and Operations, MIT Workshop on New Cross——cutting Technologies for Nuclear Power Plants, Cambridge, USA. Japan Atomic Energy Agency (JAEA). Retrieved May 4, 2025, from https://energy.mit.edu/wp-content/uploads/20l7/02/2-3.-HTGR- Brayton-Cycle-YAN—MIT—talk-r1-min.pdf
  • [27] International Atomic Energy Agency. (2024). Small modular reactors: Advances in SMR developments 2024. Vienna: IAEA. Retrieved May 4,2025, from https: //www—pub. 1aea. org/MTCD/Publications/PDF/p15790-PUB9062__.web pdf
  • [28] Nuclear Business Platform. (2025, January 16). 10 major nuclear energy developments to watch in 2025. Retrieved May 4, 2025, from https://www.nuclearbusiness-platform.com/media/insights/ 10-major-nuclear- energy-developments-to-watch—in—2025
  • [29] ResearchAndMarkets.com. (2024, October 11). Nuclear Small Modular Reactors (SMRs) Global Market 2025-2045: In—depth Analysis of Emerging Technologies and their Potential Impact on the Industry. Retrieved May 4, 2025, from https://www.businesswire.com/news/home/20241011044548/eauclear—Small—Modular— Reactors-SMRs-Global-Market—2025—2045-In—-depth-Analysis-of—Emerging-Technologies-and-their-Potential-Impact—on-the-Industry---ResearchAndMarkets.com
  • [30] https://www-pub.iaea.org/MTCD/Publications/PDF/p15790-PUB9062_web.pdf
  • [31]tps://www.nirab.org.uk/cdn/uploads/attachments/NNL_NIRAB_ReportAppendices_Digital_v.4__1.pdf
  • [32] https://snetp.eu/2025/04/23/snetps-5th-project-portfolio—webinar—driving—advancements—in—small-modular- reactor—smr-technology/
  • [33] Bartnik R., Hnydiuk-Stefan A., Skomudek W.: Methodology for thermodynamic and economic analysis of hierarchical double-cycle gas-gas nuclear power and CHP plants with high-temperature reactors and helium as the circulating medium, Progress in Nuclear Energy, https://doi.org/10.1016/].pnucene.2023.104625
  • [34] Lliou, J. (2021), What are Small Modular Reactors (SMRs)?, https://www.iaea.org/newscenter/news/what- are-small-modularreactors—smrs [Accessz February 10, 2023]
  • [35] NBA (2021), Small Modular Reactors: Challenges and Opportunities, https:/lwww.oecd- ea.org/upload/docs/application/pdf/2021-03/7560__ smr_report.pdf [Accessz January 29, 2023]
  • [36] IAEA, Small Modular Reactors: A Challenge for .: Spent Fuel Management?, https://www.iaea.org/newscenter/news/ small-modular-reactors—a—challenge-for—spent—fuel-management
  • [37] B. Mignacca, G. Locatelli, „Economics and finance of. Small Modular Reactors: A systematic review and research agenda” W: „Renewable and Sustainable Energy Review”, vol. 118, February 2020
  • [38] https ://www.neimagazine. com/features/featureiaea-ups—support-for— smrs-1052863 8
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15d7c871-c4bb-44c6-a6af-640243168f95
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.