PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Method of automatic calibration and measurement of the light polarisation plane rotation with tilted fibre Bragg grating and discrete wavelet transform usage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fibre optic sensors are used to measure various physical quantities, including polarisation plane rotation. Existing solutions for measuring the rotation of the plane of polarisation in optical fibres are based on sensors using tilted fibre Bragg gratings (TFBGs). Articles describing the possibilities of measuring the rotation of the plane of polarisation are generally concepts that show the effect of the rotation of the plane of polarisation on quantities such as the change in optical power of the light transmitted through the TFBG, or the change in the position of the selected minimum of the light spectrum. The only method that allows the measurement of the rotation of the plane of polarisation bases on optical spectrum analysis and requires manual calibration by an experienced operator. The paper proposes a fully automatic method of sensor calibration and processing the signal from a TFBG to measure the light polarisation plane rotation. The method uses the discrete wavelet transform (DWT) to process the light spectrum. An automatic algorithm to choose optimal DWT coefficients to use has been developed. The presented method offers calibration of light polarisation plane rotation angle sensors avoiding the influence of manufacturing imperfections of the measurement system components. In addition, it allows the calibration process to be fully automated without operator involvement. The developed measurement method is also fully automated. It allows measurement of angles of rotation in the range of 0-180, making it possible to distinguish between 0-90 and 90-180 rotation angle ranges without any problems. The mean square error of measurement over the entire range is 0.37 degrees, which is better than that of competing methods. In addition, an independent measurement method operating in the 82-98 rotation angle range is proposed to increase measurement precision in this range.
Twórcy
  • Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, ul. Nadbystrzycka 38A, 20-618 Lublin, Poland
  • Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, ul. Nadbystrzycka 38A, 20-618 Lublin, Poland
  • Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, ul. Nadbystrzycka 38A, 20-618 Lublin, Poland
  • Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, ul. Nadbystrzycka 38A, 20-618 Lublin, Poland
  • Faculty of Electrical Engineering, Bialystok University of Technology, ul. Wiejska 45D, 15-351 Białystok, Poland
Bibliografia
  • 1. Rovera A., Tancau A., Boetti N., Dalla Vedova M.D.L., Maggiore P., Janner D. Fiber optic sensors for harsh and high radiation environments in aerospace applications. Sensors 2023; 23(5), 2512.
  • 2. Song N., Xu X., Zhang Z., Gao F., Wang X. Advanced interferometric fiber optic gyroscope for inertial sensing: A Review. Journal of Lightwave Technology 2023; 41(13), 4023–4034. https://doi.org/10.1109/JLT.2023.3260839.
  • 3. Skorupski K., Harasim D., Panas P., Cięszczyk S., Kisała P., Kacejko P., Mroczka J., Wydra M. Overhead transmission line sag estimation using the simple opto-mechanical system with fiber Bragg gratings - Part 2: Interrogation System. Sensors 2020; 9(20), 1–21. https://doi.org/10.3390/s20092652.
  • 4. Torbus S.A. Zastosowanie światłowodów telekomunikacyjnych G.652, G.653 i G.655 w polarymetrycznych czujnikach natężenia prądu. Pomiary Automatyka Kontrola 2011; 57(5), 441–446. (in Polish)
  • 5. Marzejon M., Karpienko K., Mazikowski A., Jędzejewska-Szczerska M. Fibre-optic sensor for simultaneous measurement of thickness and refractive index of liquid layers. Metrology and Measurement Systems 2019; 26(3), 561–568. https://doi.org/10.24425/mms.2019.129584.
  • 6. Wang Y., Li B., Liu P., Hao F. Fiber-optic communication method applied to high-temperature environment. Semiconductor Lasers and Applications XI 2021; 1189104. https://doi.org/10.1117/12.2602245.
  • 7. Dai G., Su D., Qiao X. Sensitivity-enhanced high-pressure sensor based on suspended fiber-optic Fabry-Pérot interferometer. IEEE Transactions on Instrumentation and Measurement 2022, 71, 1–7. https://doi.org/10.1109/TIM.2022.3217847.
  • 8. Leal A., Díaz C., Frizera A., Lee H., Nakamura K., Mizuno Y., Marques C. Highly sensitive fiber-optic intrinsic electromagnetic field sensing. Advanced Photonics Research 2020; 2(1), 2000078. https://doi.org/10.1002/adpr.202000078.
  • 9. He X., He Z., Ran Z., Cui J., Wang N., Gong J., Guo J., Xiao Y., Sun D., Zhu J., Li Z., Yu Y., Sun Z., Rao Y. Temperature-insensitive quasi-distributed fiber-optic Fabry-Perot high-pressure sensing based on microwave interference system. Optics and Laser Technology 2023; 161, 109069. https://doi.org/10.1016/j.optlastec.2022.109069.
  • 10. Pickrell G., Udd E., Du H. Applications for fiber optic sensing in the upstream oil and gas industry. Fiber Optic Sensors and Applications XII 2015, 9480, 94800D. https://doi.org/10.1117/12.2176226.
  • 11. Baldwin C.S. Brief history of fiber optic sensing in the oil field industry. SPIE Fiber Optic Sensors and Applications XI 2014, 9098. https://doi.org/10.1117/12.2050550.
  • 12. Nieoczym A., Drozd K., Wójcik A. Geometric optimization of a beam detector for a WIM system. Advances in Science and Technology Research Journal 2018; 12(3), 233–241. https://doi.org/10.12913/22998624/97296.
  • 13. Stępniak P., Kisała P. Analysis of the inadequacy of determining the spectral characteristics of optical fiber periodic structures by way of numerical modelling. Metrology and Measurement Systems 2020; 27(1), 33–50. https://doi.org/10.24425/mms.2020.131713.
  • 14. Świrniak G. Non-invasive measurements of transparent fibres. Metrology and Measurement Systems 2020; 27(1), 19–31. https://doi.org/10.24425/mms.2020.131714.
  • 15. Hong L., Wang J.Y., Cai J.X., Teng Y.T., Qiu Z.C. Substrate-type sensitized FBG temperature sensor. Sensor Review 2023; 43(2), 83–91. https://doi.org/10.1108/SR-03-2022-0156.
  • 16. Hegde G., Himakar B., Rao S., Hegde G., Asokan S. Simultaneous measurement of pressure and temperature in a supersonic ejector using FBG sensors. Measurement Science and Technology 2022; 33(12), 125111. https://doi.org/10.1088/1361-6501/ac8a0a.
  • 17. Kisała P. Physical foundations determining spectral characteristics measured in Bragg gratings subjected to bending. Metrology and Measurement Systems 2022; 29(3), 573–584. https://doi.org/10.24425/mms.2022.142275.
  • 18. Harasim D. Temperature-insensitive bending measurement method using optical fiber sensors. Sensors and Actuators A – Physical 2021; 332(2), 13207. https://doi.org/10.1016/j.sna.2021.113207.
  • 19. Jean-Ruel H., Albert J. Recent advances and current trends in optical fiber biosensors based on tilted fiber Bragg gratings. TrAC Trends in Analytical Chemistry 2024; 174, 117663. https://doi.org/10.1016/j.trac.2024.117663.
  • 20. Butov O.V., Tomyshev K.A., Nechepurenko I.A., Dorofeenko A.V., Nikitov S.A. Tilted fiber Bragg gratings and their sensing applications. Reviews of Topical Problems 2022, 65(12), 1290–1302. https://doi.org/10.3367/UFNe.2021.09.039070.
  • 21. An G., Liu L., Hu P., Jia P., Zhu F., Zhang Y., Liu J., Xiong J. Probe type TFBG-excited SPR fiber sensor for simultaneous measurement of multiple ocean parameters assisted by CFBG. Optics Express 2023, 31(3), 4229–4237. https://doi.org/10.1364/OE.481948.
  • 22. Harasim D., Kusambayeva N. The optical measurement method for structural twist monitoring with using tilted Bragg grating sensor. Przegląd Elektrotechniczny 2018; 94(7), 62–95. https://doi.org/10.15199/48.2018.07.15.
  • 23. Kisała P., Skorupski K., Cięszczyk S., Panas P., Klimek J. Rotation and twist measurement using tilted fibre Bragg gratings. Metrology and Measurement Systems 2018; 25(3), 429–440. https://doi.org/10.24425/123893.
  • 24. Kozieł G., Harasim D., Dziuba-Kozieł M., Kisała P. Fourier transform usage to analyse data of polarization plane rotation measurement with TFBG sensor. Metrology and Measurement Systems 2024; 31(2), 10.24425/mms.2024.149698.
  • 25. Koziel G. Simplified Steganographic Algorithm Based on Fourier Transform. Advanced Science Letters 2014; 20(2), 505–509. https://doi.org/10.1166/asl.2014.5322.
  • 26. Armaselu A. New spectral applications of the Fourier transforms in Medicine, biological and biomedical fields. Fourier Transforms – High-Tech Application and Current Trends 2017, 235–252. https://doi.org/10.5772/66577.
  • 27. Szmajda M., Chyliński M., Szacha J., Mroczka J. Three methods for determining respiratory waves from ECG (Part I). Metrology and Measurement Systems 2023; 30(4), 821–837. https://doi.org/10.24425/mms.2023.147956.
  • 28. Sahoo G.R., Freed J.H., Srivastava M. Optimal wavelet selection for signal denoising. IEEE Access 2024; 12, 45369–45380. https://doi.org/10.1109/ACCESS.2024.3377664.
  • 29. Powroźnik P., Czerwiński D. Spectral methods in Polish emotional speech recognition. Advances in Science and Technology Research Journal 2016; 10(32), 73–81. https://doi.org/10.12913/22998624/65138.
  • 30. Dorosz D., Kochanowicz M., Valiente R., Diego-Rucabado A., Rodríguez F., Siñeriz-Niembro N., Espeso J.I., Lesniak M., Miluski P., Conzendorf S., Posseckardt J., Liao Z., Jimenez G.L., Müller R., Lorenz M., Schwuchow A., Leich M., Lorenz A., Wondraczek K., Jäger M. Pr3+-doped YPO4 nanocrystal embedded into an optical fiber. Scientific Reports 2024, 14, 7404. https://doi.org/10.1038/s41598-024-57307-4.
  • 31. Kochanowicz M., Markiewicz J. Broadband near-infrared emission in barium gallo-germanate glasses co-doped with bismuth, chromium, and erbium ions. Photonics Letters of Poland 2024; 16, 1–3. https://doi.org/10.4302/plp.v16i1.1247.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15d7c1a7-b2f6-4533-a907-41f5e023460b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.