PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elastic critical moment for bisymmetric steel profiles and its sensitivity by the finite difference method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is widely known that lateral-torsional buckling of a member under bending and warping restraints of its cross-sections in the steel structures are crucial for estimation of their safety and durability. Although engineering codes for steel and aluminum structures support the designer with the additional analytical expressions depending even on the boundary conditions and internal forces diagrams, one may apply alternatively the traditional Finite Element or Finite Difference Methods (FEM, FDM) to determine the so-called critical moment representing this phenomenon. The principal purpose of this work is to compare three different ways of determination of critical moment, also in the context of structural sensitivity analysis with respect to the structural element length. Sensitivity gradients are determined by the use of both analytical and the central finite difference scheme here and contrasted also for analytical, FEM as well as FDM approaches. Computational study is provided for the entire family of the steel I- and H - beams available for the practitioners in this area, and is a basis for further stochastic reliability analysis as well as durability prediction including possible corrosion progress.
Rocznik
Strony
37--59
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Structural Mechanics Faculty of Civil Engineering Architecture and Environmental Engineering Al. Politechniki 6, 90-924 Łódź, POLAND
autor
  • Department of Structural Mechanics Faculty of Civil Engineering Architecture and Environmental Engineering Al. Politechniki 6, 90-924 Łódź, POLAND
Bibliografia
  • [1] Trahair N.S. (1993): Flexural-Torsional Buckling of Structures. – London, E&FN SPON.
  • [2] Trahair N.S. (1996): Laterally unsupported beams. – Engineering Structures, vol.18, pp.759-768.
  • [3] Bleich F. (1952): Buckling Strength of Metal Structures. – New York: McGraw-Hill.
  • [4] Chen W.F. and Atsuta T. (1977): Theory of Beam-Columns. – Space Behavior and Design, vol.2. New York, McGraw-Hill.
  • [5] Galambos T.V. (1998): Guide to Stability Design Criteria for Metal Structures. – 5th ed., Wiley.
  • [6] Timoshenko S.P. and Gere J.M. (1961): Theory of Elastic Stability. – 2nd ed. New York: McGraw-Hill.
  • [7] Vlasov V.Z. (1961): Thin-walled Elastic Beams. – 2nd ed., Jerusalem, Israel, Israel Program for Scientific Translation.
  • [8] Lam C.C., Yam M.C.H., Iu V.P. and Cheng J.J.R. (2000): Design for lateral torsional buckling of coped I-beams. – Journal of Constructional Steel Research, vol.54, pp.423–443.
  • [9] Masarira A. (2002): The effect of joints on the stability behaviour of steel frame beams. – Journal of Constructional Steel Research, vol.58, pp.1375–1390.
  • [10] Tong G.S., Yan X.X. and Zhang L. (2005): Warping and bimoment transmission through diagonally stiffened beam-to-column joints. – Journal of Constructional Steel Research, vol.61, pp.749-763.
  • [11] Larue B., Khelil A. and Gueury M. (2007): Elastic flexural-torsional buckling of steel beams with rigid and continuous lateral restraints. – Journal of Constructional Steel Research, vol.63, pp.692–708.
  • [12] SN003a-EN-EU - NCCI: Elastic critical moment for lateral torsional buckling.
  • [13] Serna M.A., López A., Puente I. and Yong D.J. (2006): Equivalent uniform moment factors for lateral–torsional buckling of steel members. – Journal of Constructional Steel Research, vol.62, pp.566–580.
  • [14] Nguyen C.T., Moon J., Le V.N. and Lee H.E. (2010): Lateral torsional buckling of I-girders with discrete torsional bracings. – Journal of Constructional Steel Research, vol.66, pp.170-177.
  • [15] Nguyen C.T., Joo H.S., Moon J. and Lee H.E. (2012): Flexural-torsional buckling strength of I-girders with discrete torsional braces under various loading conditions. – Engineering Structures, vol.36, pp.337–350.
  • [16] Park J.S., Stallings J.M. and Kang Y.J. (2004): Lateral–torsional buckling of prismatic beams with continuous topflange bracing. – Journal of Constructional Steel Research, vol.60, pp.147–160.
  • [17] Bathe K.J. (1996): Finite Element Procedures. – Prentice Hall, Englewood Cliffs.
  • [18] Zienkiewicz O.C. and Taylor R.L. (2005): Finite Element Method for Solid and Structural Mechanics. – 6th edition, Amsterdam: Elsevier.
  • [19] Liszka T. and Orkisz J. (1980): The finite difference method at arbitrary irregular grids and its applications in applied mechanics. – Computers and Structures, vol.11, pp.83-95.
  • [20] Mitchell A.R. and Griffiths D.F. (1980): The Finite Difference Method in Partial Differential Equations. – Chichester: Wiley.
  • [21] Wasow W.R. and Forsythe G.E. (1959): Finite Difference Methods for Partial Differential Equations. – New York-London: Wiley.
  • [22] Char B.W. (1992): First Leaves: A Tutorial Introduction to Maple V. – Berlin-Heidelberg: Springer-Verlag.
  • [23] Zhang L. and Tong G.S. (2008): Elastic flexural-torsional buckling of thin-walled cantilevers. – Thin-Walled Structures, vol.46, pp.27–37.
  • [24] Suryoatmono B. and Ho D. (2002): The moment–gradient factor in lateral–torsional buckling on wide flange steel sections. – Journal of Constructional Steel Research, vol.58, pp.1247–1264.
  • [25] ENV 1993-1-1:1992 Eurocode 3 – Design of steel structures – Part 1-1: General rules – General rules and rules for building.
  • [26] Kamiński M. (2009): A generalized stochastic finite difference method. – Journal of Theoretical and Applied Mechanics, vol.47, pp.957-975.
  • [27] Haftka R.T. and Gürdal Z. (1992): Elements of Structural Optimization. – Amsterdam: Kluwer Acad. Publ.
  • [28] Melchers R.E. (2002): Structural Reliability Analysis and Prediction. – Chichester: Wiley.
  • [29] Nayfeh A. (1973): Perturbation Methods. – New York: Wiley.
  • [30] Kamiński M. (2013): The Stochastic Perturbation Method for Computational Mechanics. – Chichester: Wiley.
  • [31] Björck A. (1996): Numerical Methods for Least Squares Problems. – SIAM, Philadelphia.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15cab4a5-c551-46a5-a6dc-b13822b75305
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.