PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect Of Ti Powder Addition On The Fabrication Of TiO2 Nanopowders

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ dodatku nanoproszku Ti na zagęszczanie i spiekanie nanoproszków TiO2
Języki publikacji
EN
Abstrakty
EN
Sintered samples of Ti added TiO2 nanopowders were fabricated by combined application of magnetic pulsed compaction (MPC) and sintering. The effect of Ti nano powder on density, shrinkage and hardness of the samples were investigated as part of the study. The optimum processing conditions were found to be around 0.5 GPa MPC pressure and 1450°C sintering temperature, illustrating maximum density, hardness and minimum shrinkage. High pressure compaction using MPC was found to enhance density with increasing MPC pressure up to 0.9 GPa, and significantly reduce the total shrinkage (about 16% in this case) in the sintered bulks compared to other general processes (about 18%). While sintered samples blended with micro Ti showed presence of microstructural cracks, the samples with 1-2% nano Ti had less or no cracks on them. Overall, the inclusion of nano Ti indicated improvement in mechanical properties of TiO2 nanopowders sintered preforms as opposed to micro Ti-added TiO2.
Twórcy
  • School of Mechanical Engineering, The University of Adelaide, South Australia
autor
  • Division of Advanced Materials Engineering, Kongju National University, South Korea
  • School of Mechanical Engineering, The University of Adelaide, South Australia
autor
  • Division of Advanced Materials Engineering, Kongju National University, South Korea
autor
  • Automotive Components & Materials R&Bd Group, Korea Institute Of Industrial Technology, 6 Cheomdan-Gwagiro 208 Beon-Gil, Buk-Gu, Gwangju 500-480, South Korea
autor
  • Division of Advanced Materials Engineering, Kongju National University, South Korea
Bibliografia
  • [1] P. T. Hsiao, K. P. Wang, C. W. Cheng, H. Teng, J. Photochem. Photobiol. A: Chem. 188, 19 (2007).
  • [2] T. J. Webster, R. W. Siegel, R. Bizios, Biomater. 20, 1221 (1999).
  • [3] H. Hahn, J. Logas, R. Averback, J. Mater. Res. 5, 609 (1990).
  • [4] Y. A. Kotov, V. Osipov, M. Ivanov, O. Samatov, V. Platonov, E. Azarkevich, A. Murzakaev, A. Medvedev, Tech. Phys. 47, 1420 (2002).
  • [5] D. Lee, S. Yang, M. Choi, Appl. Phys. Lett. 79, 2459 (2001).
  • [6] K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, O. Van der Biest, Acta Mater. 53, 4379 (2005).
  • [7] M. Omori, Mater. Sci. Eng. A 287, 183 (2000).
  • [8] B. Azhdar, B. Stenberg, L. Kari, Polym. Testing 24, 909 (2005).
  • [9] H. F. Fischmeister, Proceedings of the Institution of Mechanical Engineers 196, 105 (1982).
  • [10] J. Wang, X. Qu, H. Yin, M. Yi, X. Yuan, Powder Tech. 192, 131 (2009).
  • [11] S. J. Kalita, S. Qiu, S. Verma, Mater. Chem. Phys. 109, 392 (2008).
  • [12] A. Yamada, S. Gaudio, C. Lesher, J. Phys. Conference Series, IOP Publishing, Bristol (2010).
  • [13] J. H. Kim, R. M. Raihanuzzaman, C. K. Rhee, J. G. Lee, M. K. Lee, S. J. Hong, Mater. Trans. 52, 1156 (2011).
  • [14] R. M. Raihanuzzaman, J. W. Song, S. J. Hong, J. Alloy. Compd. 536, S211 (2012).
  • [15] A. Newman, S. Sampath, H. Herman, Mater. Sci. Eng. A 261, 252 (1999).
  • [16] J. W. Song, H. S. Kim, S. S. Kim, J. M. Koo, S. J. Hong, J. Kor. Powd. Met. Inst. 17, 242 (2010).
  • [17] J. S. Park, H. S. Kim, K. S. Lee, J. G. Lee, C. K. Rhee, S. J. Hong, J. Kor. Powd. Met. Inst. 16, 223 (2009).
  • [18] J. W. Song, H. S. Kim, H. M. Kim, T. S. Kim, S. J. Hong, J. Kor. Powd. Met. Inst. 17, 302 (2010).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-15ca9890-9458-43aa-9190-d14a71b6bada
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.